(c) Springer—Verlag 2006. ECAI 2006

A Real generalization of discrete AdaBoost

Richard Nock! and Frank Nielsen?

Abstract. Scaling discrete AdaBoost to handle real-valued weak
hypotheses has often been done under the auspices of convex op-
timization, but little is generally known from the original boosting
model standpoint. We introduce a novel generalization of discrete
AdaBoost which departs from this mainstream of algorithms. From
the theoretical standpoint, it formally displays the original boosting
property; furthermore, it brings interesting computational and nu-
merical improvements that make it significantly easier to handle “as
is”. Conceptually speaking, it provides a new and appealing scaling
to R of some well known facts about discrete (ada)boosting. Perhaps
the most popular is an iterative weight modification mechanism, ac-
cording to which examples have their weights decreased iff they re-
ceive the right class by the current discrete weak hypothesis. Our
generalization to real values makes that decreasing weights affect
only the examples on which the hypothesis’ margin exceeds its av-
erage margin. Thus, while both properties coincide on the discrete
case, examples that receive the right class can still be reweighted
higher with real-valued weak hypotheses. From the experimental
standpoint, our generalization displays the ability to produce low
error formulas with particular cumulative margin distributions, and
it provides a nice handling of those noisy domains that represent
Achilles’ heel for common Adaptive Boosting algorithms.

1 Introduction

In supervised learning, it is hard to exaggerate the importance of
boosting algorithms. Loosely speaking, a boosting algorithm re-
peatedly trains a moderately accurate learner, gets its weak hy-
potheses, combines them, to finally output a strong classifier which
boosts the accuracy to arbitrary high levels [9, 10]. (discrete) Ad-
aboost, undoubtfully the most popular provable boosting algorithm
[5], uses weak hypotheses with outputs restricted to the discrete set of
classes that it combines via leveraging coefficients in a linear vote.
Strong theoretical issues have motivated the extension of this dis-
crete AdaBoost [6] to handle real-valued weak hypotheses as well
[6, 11, 15, 18]. Even when only few of them are true generalizations
of discrete AdaBoost [11, 18], virtually all share a strong background
in convex optimization originally rooted in a “key” to boosting in
AdaBoost: a strictly convex exponential loss integrated into a weight
update rule for the examples, loss which upperbounds the error and
approximates the expected binomial log-likelihood. However, very
little is often known for these algorithms from the seminal boosting
model standpoint [10, 9, 16], a model which roughly requires conver-

1 Université Antilles-Guyane, Département Scientifique Interfacultaire, Cam-
pus de Schoelcher, B.P. 7209, 97275 Schoelcher, Martinique, France. E-
mail: rnock @martinique.univ-ag.fr

Sony Computer Science Laboratories Inc.,
Gotanda, Shinagawa-Ku, Tokyo 141-0022,
Frank.Nielsen @csl.sony.co.jp

2 3-14-13 Higashi

Japan.  E-mail:

gence to reduced true risk under very weak assumptions (with high
probability).

In this paper, we propose a new real AdaBoost, a generalization of
discrete AdaBoost that handles arbitrary real-valued weak hypothe-
ses. With respect to former real AdaBoosts, the weight update is
fundamentally different as it does not integrate anymore the con-
vex exponential loss; also, the leveraging coefficients for the weak
hypotheses differ in the output; finally, these leveraging coefficients
are given in closed form and their computation can now easily be de-
layed until the end of boosting, which is not the case for conventional
real AdaBoosts [6, 11, 18]. The major theoretical key feature of this
algorithm is that it is a provable boosting algorithm in the original
sense. Another point is that it saves computation time with respect to
previous generalizations of discrete AdaBoost, that need to approx-
imate the solution of a convex minimization problem at each boost-
ing iteration [11, 18]. From the experimental standpoint, the weight
update rule, which does not require anymore the approximation of
logarithms or exponentials, is less prone to numerical errors. Finally,
it prevents or reduces some numerical instabilities that previous gen-
eralizations [11, 18] face when the weak hypotheses reach perfect, or
perfectly wrong, classification.

As a matter of fact, it is quite interesting that our algorithm is
indeed a generalization of discrete AdaBoost, as when the weak hy-
potheses have outputs constrained to the set of classes, both algo-
rithms coincide. From this standpoint, our paper also brings a rele-
vant conceptual contribution to boosting. Indeed, we give a complete
generalization to R of popular (discrete) boosting properties, and this
is sometimes clearly not trivial. For example, discrete AdaBoost is
very often presented as an algorithm that reweights lower the exam-
ples that have received the right class. Scaled to R, this is not true
anymore: lower reweighting occurs only for examples on which the
classifier’s margin exceeds its average margin. Only on the discrete
prediction framework do these two properties coincide. Furthermore,
this scaling property does not not hold for previous real AdaBoosts
[6, 11, 15, 18]. For some reasons, our scaling smoothes predictions,
and it might explain why experiments clearly display that our algo-
rithm handles noise more efficiently than discrete or real AdaBoosts.
Noise handling has soon be described as AdaBoost’s potential main
problem [1].

Section 2 presents some definitions, followed by a Section on our
generalization of discrete AdaBoost. Section 4 presents and discusses
experimental results, and a last Section concludes the paper.

2 Definitions

Our framework is rooted into the original weak/strong learning
and boosting frameworks, and Valiant’s PAC model of learnability
[5, 10, 19]. We have access to a domain X of observations, which
could be {0,1}", R", etc. . Here, n is the number of description



(c) Springer—Verlag 2006. ECAI 2006

variables. More precisely, we collect examples, that is, couples (ob-
servation, class) written (x,y) € X x {—1,+1}. “+1” is called
the positive class (or label), and “-1” the negative class. In this pa-
per, we deal only with the two-classes case. Well known frameworks
exist that allow its extension to multiclass, multilabel frameworks
[18]. In this paper, boldfaces such as x denote n-dimensional vec-
tors, calligraphic faces such as X denote sets and blackboard faces
such as S denote subsets of R, the set of real numbers. Unless ex-
plicitely stated, sets are enumerated following their lower-case, such
as {x; : 4 =1,2,...} for vector sets, and {z; : ¢ = 1,2, ...} for other
sets (and for vector entries). We make the assumption that examples
are sampled independently, following an unknown but fixed distribu-
tion D over X x {—1,+1}. Our objective is to induce a classifier or
hypothesis H : X — S, that matches the best possible the examples
drawn according to D.

For this objective, we define a strong learner as an algorithm which
is given two parameters 0 < €, < 1, samples according to D aset S
of examples, and returns a classifier or hypothesis H : X — S such
that with probability > 1 — 4, its true risk is bounded as follows:

Pre ~plsign(H(x)) #yl =epx < €. D

Here, sign(a) is +1 iff @ > 0, and —1 otherwise. The time complex-
ity of the algorithm is required to be polynomial in relevant param-
eters, among which 1/e,1/4, n. To be rigorous, the original models
[19, 10] also mention dependences on concepts that label the ex-
amples. Examples are indeed supposed to be labeled by a so-called
target concept, which is unknown but fixed. Distribution D is in fact
used to retrieve the examples from this target concept, and the time
complexity of the algorithm is also required to be polynomial in its
size. Hereafter, we shall omit for the sake of clarity this notion of tar-
get concept, which is not important for our purpose, since our analy-
sis may also be fit to handle it as well.

A weak learner (W L) has basically the same constraints, with the
notable exception that (1) is only required to hold withe = 1/2 — ~
for some v > 0 a constant or inverse polynomial in relevant pa-
rameters, and this still has to be verified regardless of D. Since pre-
dicting the classes at random, such as with an unbiased coin, would
yield Pr(; v~ p[sign(random(x)) # y] = 1/2,VD, it comes that
a weak learner is only required to perform slightly better than ran-
dom prediction. In the original models, it is even assumed that § is
also an inverse polynomial in relevant parameters, which makes that
the constraints on WL are somehow the lightest possible from both
the statistical and the computational standpoints. The (discrete) Weak
Learning Assumption (WLA) assumes the existence of WL [9, 16].
Simple simulation arguments of W L [8] allow to show that the weak-
ening on ¢ is superficial, as we can in fact weak learn with the same
arbitrary ¢ as for strong learning. However, the conditions on ¢ are
dramatically different, and the question of whether weak and strong
learning are equivalent models has been a tantalizing problem until
the first proof that there exists boosting algorithms that strong learn
under the sole access to WL [16], thus proving that these models
are indeed equivalent. This first boosting algorithm outputs a large
tree-shaped classifier with majority votes at the nodes, each node be-
ing built with the help of WL. The point is that it is not easy to im-
plement, and it does not yield classifiers that correspond to familiar
concept representations.

AdaBoost [5] has pioneered the field of easily implementable
boosting algorithms, for which S = {—1, +1}. After [5], we refer to
it as discrete AdaBoost. Basically, AdaBoost uses a weak learner as
a subprocedure and an initial distribution w1 over S which is repeat-
edly skewed towards the hardest to classify examples. After 7" rounds

Input: sample S = {(zi,y:),x; € X,y; € {—1,+1}}
wy — u;
fort=1,2,...,T do

Get (ht : X — S) «— WL(S,w,);

Find a; € R;

Update: V1 < i < m,

Wiyl —  wes X exp (—awyihe(x:)) /Z: 5 (2)

end
Output: Hr(x) = >/_, ath(x)

Algorithm 1: An abstraction of AdaBoost

of boosting, its output, Hr, is a linear combination of the weak hy-
potheses. Algorithm 1 gives a useful abstraction of AdaBoost, in
which w is the uniform distribution, Z; is the normalization coef-
ficient, the elements of S are enumerated s; = (x;,y;) and their
successive weight vector is noted wy, for ¢ > 1. In discrete Ad-
aboost, we would have:

ar = 1ln 1= Cwen , 3)

2 €wy,hy

where “In” denotes the natural logarithm. The two key steps in Ad-
aBoost are the choice of a; and the weight update rule. They are
strongly related and follow naturally if we seek to minimize the fol-
lowing observed exponential loss [6, 18] through the induction of
Hr:

62}’?’1‘17" = E(“’vy)N’wl(eXp(inT(m))) ’ (4)

with E. the mathematical expectation. Since I [sign(Hr(x)) # y] <
exp(—yHr(x)) (with I the indicator function), €w, s < €0 g..»
and so minimizing the exponential loss amounts to minimizing the
empirical risk as well [6, 11, 15, 17], and it turns out that it brings
a boosting algorithm as well [5, 17]. There are other excellent rea-
sons to focus on the exponential loss instead of the empirical risk:
it is smooth differentiable and it approximates the binomial log-
likelihood [6]. Its stagewise minimization brings both the weight up-
date in (2), and the following choice for av:

ar = arg gnel]% E(e,y)~w, (exp (—ayhi(x))) (5)
= argminZ; . 6)
a€cR

One more reason, and not the least, to focus on the exponential loss,
is that it brings a stagewise maximization of margins. While the em-
pirical risk focuses only on a binary classification task (the class as-
signed is either good or bad), margins scale it to real classification,
as they integrate both the binary classification task and a real magni-
tude which quantifies a “confidence” in the label given. Large margin
classification can bring very fast true risk minimization [17]. Margins
justify to scale S = {—1, +1} to an interval such as [—1, +1] [6, 18];
in this case, the sign of the output gives the class predicted. When-
ever we still enforce hy : X — {—1,+1}, (5) admits a closed-form
solution, which is naturally (3), and the boosting algorithm is dis-
crete AdaBoost [6, 5]. Relaxing S to [—1, +1] yields real AdaBoost
[6, 11, 18]. Unfortunately, (5) does not have a closed-form solution
in this case [18]. Iterative techniques exist for its fast approximation
[13], but they have to be performed at each boosting iteration (which
buys overall a significant load increase), and it may be the case that
the solution found lies outside the boosting regime if the number of
approximation steps is too small.



(c) Springer—Verlag 2006. ECAI 2006

Many other extensions have been proposed to scale S =
{=1,+1} up to [-1,+1] or even R in AdaBoost, but virtually very
few of those that do not generalize discrete AdaBoost have been
proven so far to be boosting algorithms in the original sense. For
space considerations, we focus our comparison only on very few of
them that bear at least close similarities with true real generalizations
of discrete AdaBoost [6, 11, 15, 18]. These algorithms, that fit to Al-
gorithm 1, mainly differ on the choice of the leveraging coefficient
a¢. For example, [6, 15] pick o = 1, a choice for which the boosting
property is not shown to hold.

3 Our Real generalization of AdaBoost

We now give up with the direct minimization of (4), and scale S =
{—1,+1} up to R itself; suppose we replace the weight update (2)
and eq. (5) by what follows:

Wit - Wwei « (1 - (ut:lyzhis;tl)/ht )) . (7)
Mt
1 1 + ot
= 1 .
o 2h 1 — ®

Here, we have fixed hf = maxi<i<m |he(z:)| € R, the maximal
value of h; over S, and:

o= g 3w ihi(e) € [-1,+1] ©)
the normalized margin of h: over S. For the sake of clarity, we sup-
pose in the following subsection that V1 < ¢ < T, hf < oo. Infinite
values for h; can be handled in two ways: either we bias/threshold
the output of h; to make it finite [18], or we code it as oo, making
o = 0and fie = 37, 1 (1)) =00 WeiSigN(Yihe (). In both cases,
wq41 is a valid distribution and the properties below are kept. Let us
call AdaBoostr our real generalization of discrete AdaBoost.

3.1 Properties

We first show that AdaBoostr is indeed a generalization of discrete
AdaBoost.

Lemma 1 WhenS = {—1,+1}, AdaBoostr = discrete Adaboost.

Proof: In this case, we have h; = 1 and pz = 1 — 2€4,,1,, Which
brings that eq. (8) is also ax = (1/2) In((1 — €w;,h;)/€we,he ), L€
like in discrete AdaBoost. Our update rule simplifies to:

we,i (1 — yihe(x:) + 2yihe (€4 €wy by )

Wt41,5 5
2€w,hy (1 = €wy,hy)

ie.:

Wess { weif (2(1 = €wyne)) M yihe(mi) = +1

wt,i/(Qthyht) iff yiht(:l:i) =—1

This is the same expression for the weight update of discrete Ad-
aBoost. O
Now, we show that AdaBoostr is a boosting algorithm for arbitrary
real-valued weak hypotheses. In fact, we show a little bit more, and
for this objective, we define the margin of Hr on example (x,y) as:

tanh(yHr(x)/2)

exp(yHr(x)) — 1
exp(yHr(x)) +1

vr((@,y)) =

€l-1,+1 . (10)

This definition of margin extends a previous one for discrete Ad-
aBoost [21], and its choice is discussed in Section 3.2. VO €
[-1,41] we also define the classifier’s “margin error” as the pro-
portion of examples whose margin does not exceed 6:

Varire = S Ier(@oy)) <6 (D)

=1

Cleatly, €w,m; = Vu,Hyp,0, and Vy 11,.,0 generalizes €y, m,.. We now
prove a first Theorem on AdaBoost.

Theorem 1 VS C R, VO € [—1,+41], after T > 1 iterations, we

have:
T
1+0 1 2
< (== -5 )
(170) Xexp( 2t1ut) (12)

Proof: We need the following simple Lemma.

Vu,Hp 0

Lemma2 Va € [-1,1],Vb € [-1,1],

1—ab > \/l—aQeXp( bln1+a>

2 7 1-gqa

Proof: The function in the right-hand side is strictly convex in b for
a # 0, and both functions match for b = £1 and a = 0. Writing the
right-hand side (1 4 a)*~%/2(1 — ) +%)/2 implies that its limits
when a — +£1 are zero. O
Consider some example (z;,y;) € S and some 1 < ¢ < T'. The way
we use Lemma 2 is simple: fix a = u: and b = y;he(x;)/hi. They
satisfy the assumptions of the Lemma, and we obtain:

1 — (peyihe(zi) /hf)
she(as) . 14 e
> — 2 _yti R .
> /1 —p; exp( oh7 lnl_ut (13)

Unraveling the weight update rule, we obtain:

T
wrirs x [[ Q= p)

t=1
T
= wx [[ (= (ueyihu () /R7)) - (14)
t=1

Using 7T times (13) on the right-hand side of (14) and simplifying
yields:

(wryri/w) x [[/1 -1 > exp(—y:Hr(z:)) . (15)

t=1

Since for any real g, I[g < 0] < exp(—q), we have:

1+6
Tvr((mi,yi) <0 = 1 [yiHT(mi) —In 2 j 5 < o}
< exp (—yiHT(wi)—i—ln 1—1—3)

= (%) x exp(—y; Hr (z:))

T
wry1; (140 / 5
< — 1T — || _
> " (1_0>Xt1 1 Hi

Where the last line uses ineq. (15). There only remains to sum that
last ineq. for all examples of S, and use the fact that v/1 — a? <



(c) Springer—Verlag 2006. ECAI 2006

exp(—a®/2),Ya € [~1,1]. Given that w1 is a distribution and
u; = 1/m, we immediately obtain the statement of the Theorem. [J
Theorem 1 generalizes a well-known convergence Theorem for Ad-
aBoost’s empirical risk [18] (8 = 0). This generalization is impor-
tant, as it says that virtually any margin error is subject to the same
convergence rate towards zero, and not simply the empirical risk.
Thus, more than a single point, it gives also a complete curve f(0)
upperbounding the empirical margin distribution as given by (11).
To prove that AdaBoostr is a boosting algorithm, we need a WLA
that a real-valued W L should satisty. Its formulation for real-valued
hypotheses follows that for the discrete case [9, 10, 18]: basically,
it amounts to say that we want h, to perform significantly different
from random, a case which can be represented by ©; = 0. A natural
choice is thus fixing the WLA to be (V¢ > 1):

(real) WLA || > ~, for the same > 0 as in the discrete WLA.

This, in addition, provides us with a generalization of the discrete
WLA [9, 16], since we have in this case jt; = 1 — 2€4w,,n,. This
brings that either €, ,n, < (1/2) —v/2, O €w,,n, > (1/2) + /2.
It has been previously remarked that this second condition, although
surprising at first glance since the empirical risk is worse than ran-
dom, is in fact equivalent to the first from the boosting standpoint,
as it “reverses” the polarity of learning: when h, satisfies the second
constraint, —h satisfies the first [6].

Now proving that AdaBoostr is a boosting algorithm amounts first
to using Theorem 1 with & = 0, to obtain under the WLA that af-
ter T iterations of AdaBoostz, we have e, mr, < exp(—T72/2).
Thus, if we run AdaBoostg for T = Q((1/9?) In'm), we get an Hp
consistent with S. Since T is polynomial in all relevant parameters,
classical VC-type bounds on the deviation of the true risk for linear
separators [8, 20] immediately bring the following Theorem.

Theorem 2 VS C R, provided WLA holds, AdaBoostr is a boosting
algorithm.

3.2 Discussion

Perhaps one of the most important difference with discrete AdaBoost
and its numerous offsprings [5, 6, 4, 18] lies in the fact that they tend
to reweight lower the examples that have received the right class.
This property is appealing, and has certainly participated to their
spread and use. However, when scaling the binary classification prob-
lem (S = {—1,+1}) to R, for this property to fully integrate the ex-
tended framework, it should rely entirely on margins (classes + con-
fidences) instead of just classes. This becomes true with AdaBoostg:
lower reweighting occurs only for examples on which the current
weak classifier’s margin exceeds its average margin (when p: > 0):

yihe(xi) /Ry > e . (16)

Thus, there can be examples that receive the right class by h, and
that have their weights increased. When p; < 0, the polarity of
boosting (and reweighting) is reversed in the same way as when
€w,,h, > 1/2 for discrete AdaBoost. Finally, these properties are
true generalization of discrete AdaBoost’s, as all coincide again on
the discrete case.

Margins. It may be helpful to compare our definition of margin
with those recently used for real extensions of AdaBoost [6, 17, 18].
Eq. (10) is generally replaced by:

H
YHr(@) oy 4. (17

VT((mvy)) = Zthl ”

Eq. (17) is almost equivalent to the margin of a classifier that we have
used for weak hypotheses (u+). However, eq. (10), which defines the
margin of an example, appears to be more convenient for three rea-
sons. The first is statistical, as our definition is in direct relationship
with additive logistic models [6]. Suppose we fit Hr to the additive
logistic model :

ply = +1|z]
ply = —1lz] ’

with the probabilities p[.|x] to be estimated while learning. This
brings for (10):

Hr(z) = In (18)

vr((z,y)) = y(@2ply=+1jz]-1) . 19)

The quantity 2ply = +1|z] — 1 = ply = +1]z] — ply = —1|z]
which replaces Hr(z)/ >/, ar = In(ply = +1|z]/ply =
~1|z])/ S, ar in (17) is the gentle logistic approximation of
[6], a quantity which is much more stable than the full logistic
model itself. The second reason is more technical. Theorem 1 shows
that vy, m,,0 vanishes under the WLA regardless of the value of
6 € (—1,1) with margin definition (10). Upperbounds for vy, .0
with eq. (17) are not as easy to read, as all require to vanish that 6
be smaller than fluctuating upperbounds that can be < 1 [17, 18].
It does not seem that it is the boosting algorithm which is responsi-
ble, as in our case, using (17) would not yield a vanishing vy, m,,0
when 0 > max; |u¢|/2, a situation identical to previous analyses
[5, 17, 18]. The third reason is an experimental consequence of the
second. Definition (10) makes cumulative margin distributions easier
to read, since there is no fluctuating theoretical upperbound < 1 for
“boostable” margins.

Computations and numerical stability. A first difference with
previous generalizations of discrete AdaBoosts that do not fix ad hoc
values for a; [6, 11, 18] is computational. Eq. (5) has no closed form
solution in the general case, so they all need to approximate o;. The
problem is convex and single variable, so its approximation is sim-
ple, but it needs to be performed at each iteration, which buys a sig-
nificant additional computation time with respect to AdaBoostg, for
which o is exact. Approximating has another drawback: if not good
enough, the current iteration may lie outside the boosting regime
[6, 11, 18].

The extensions of discrete AdaBoost [6, 11, 18] face technical and
numerical difficulties to compute oy when h: or —h; reaches consis-
tency, that is, when €., 1, approaches its extremal values, 0 or 1. On
the extreme values, there is no finite solution to eq. (5), and thus the-
oretically no weight update. In our case, the problem does not hold
anymore, as the multiplicative update of eq. (7) is never zero nor in-
finite if we adopt the convention that 0/0 = 1. Indeed, a numerator
equals zero iff all numerators equal zero iff all denominators equal
zero. Thus, zeroing any numerator or denominator, which amounts
to making either perfect or completely wrong classification for ~: on
S, brings no weight change in w4 1.

A second, well known technical difficulty for some extensions of
discrete AdaBoost [6, 11, 18], occurs when the empirical risk ap-
proaches 0 or 1, regions where |a¢| has extremely large regimes. In
this case, the numerical approximations to exponentials in eq. (5),
with the approximations of o;, make the computation of the weights
very instable. Clearly, large multiplicative coefficients for the weight
update are possible for AdaBoostg. However, instability is less pro-
nounced, since we have split the computation of the leveraging co-
efficients and that of the weight update, allowing the computation of
all o to be delayed till the end of boosting.



(c) Springer—Verlag 2006. ECAI 2006

Figure 1.

Estimated true risks on 25 domains, comparing discrete

AdaBoost [5] (D), AdaBoostg (U) and the real AdaBoost of [6, 11, 18] (T).
For each domain, we put in emphasis the best algorithm(s) and the worst
algorithm(s) out of the three. The last 3 rows count the number of times each
algorithm counts respectively among the best, second, and worst.

T =10 T =50

Domain D U T D U T

Balance (2C) 8.73 8.73 9.05 4.44 3.81 4.92
Breast-Wisc 4.51 4.65 4.79 4.22 3.38 4.51
Bupa 34.57  34.57 3285 | 3081 27.71 28.57
Echocardio 3143 2643 30.71 | 30.00 25,71 27.86
Glass2 22,94 1824 1941 | 17.65 17.65 15.88
Hayes Roth (2C) 1647 2411 14.71 | 1941 1471 1588
Heart 18.51 16.67 18.89 | 19.63 16.67 19.63
Heart-Cleve 23.87 2129 19.68 | 1742 1935 2097
Heart-Hungary 19.33 1933 1633 | 21.33 1633 1833
Hepatitis 1647 1529 17.05 | 1471 1529 1823
Horse 17.10 1631 1816 | 20.00 16.31 33.68
Labor (2C) 18.33 6.67 11.67 8.33 5.00 8.33
Lung cancer 2C) | 27.50 27.50 30.00 | 25.00 25.00 30.00
LEDeven 976 17.07 1122 | 10.24 9.51 10.98
LEDeven+17 22.68 2146 2560 | 26.34 2536  26.10
Monks1 2518 2518 16.00 | 1339 17.50 1.50
Monks2 34.75 3393 3228 | 3426 3770 10.17
Monks3 2.85 3.57 2.14 1.43 1.79 1.79
Parity 4593 4519 4778 | 4630 47.78  46.30
Pima (2C) 2442 2455 2532 | 2494 2403 25.71
Vehicle (2C) 26.00 27.17 2635 | 2541 2529 25.88
Votes 4.78 5.00 5.45 3.86 5.00 5.68
Votes w/o 9.78 8.86 9.78 | 1023  10.23 1045
XD6 2032 21.64 1951 | 1574 1492 13.77
Yeast (2C) 2893 2873 26.80 | 2693 2733  26.67
#best 7 11 9 7 15 6
#second 9 6 5 9 4 5
#Hworst 9 8 11 9 6 14

4 Experiments

Experiments were carried out on 25 domains, most of which come
from the UCI repository [2]. Domains with more than two classes
(indicated 2C) were transformed in a two class problem by group-
ing all classes but the first into one: sometimes, this brought domains
with highly unbalanced classes, thereby complicating even further
the learning task. On each domain, we ran discrete AdaBoost [5],
AdaBoostg and the real AdaBoost of [11, 18]. WL is set to a rule
(monomial) learner, with fixed maximal rule size (attribute number)
r [12, 14]. True risks are estimated using a 10-fold stratified cross
validation procedure on the whole data. Since each rule h; has two
possible outputs, yh; has four possible values, and so the analytic so-
lution for a; of discrete AdaBoost does not apply for real AdaBoost
[11, 18]. The true o is approximated from (5) using a simple di-
chotomous search until the relative error does exceed 1075, using
results of [13] to make it faster. Empirically, the execution time for
real AdaBoost [6, 11, 18] is on average more than 100 times that of
discrete AdaBoost and AdaBoostg.

General results. We first give some general comments on results
that were obtained at early and reasonable stages of boosting, namely
after 7' = 10 and T' = 50 steps of boosting, for a rule learner config-
ured with » = 2. Figure 1 summarizes the results obtained. While
AdaBoostr tends to perform the best, interesting patterns emerge
from the simulated domains from which we know everything about
the concept to approximate. Easy domains such as Monks(1+2) [2]
are those on which real AdaBoost performs the best and converges

the fastest. Increasing further 7' makes that real AdaBoost outstrips
even more the two other algorithms. However, as the domain gets
complicated, AdaBoostgbecomes the algorithm that beats the other
two when 7" increases. Consider the following domain ordering, from
the easiest to the hardest: Monks(1+2) (no noise, no irrelevant at-
tributes), XD6 (10% class noise, one irrelevant attribute), LEDeven
(10% attribute noise), LEDeven+17 (LEDeven + 17 irrelevant at-
tributes) [2, 12]. Real AdaBoost beats the other two algorithms on
XD6, but another experiment on larger classifiers (r = 3;7° = 100)
reveals that AdaBoostgbecomes the winner and approaches Bayes
risk with 11.15% error, while discrete and real AdaBoost respec-
tively achieve 11.47% and 12.46% error (statistically worse in that
latter case). Winning occurs even sooner on LEDeven (7' = 50) and
LEDeven+17 (T' = 10). One reason for this phenomenon might be
the fact that the reweighting scheme of AdaBoostris actually gentler
than the others, especially on noisy examples: discrete and real Ad-
aBoost are subject to very large weight update, due to the exponential
update rule and the fact that higher reweighting can occur on the sole
basis of the binary classification result (good/bad class), even when
the classifier has minute confidence on the label it predicts. This can-
not happen in our case if the classifier’s margin is negative; when-
ever it is positive, examples that receive the right class can still be
reweighted higher, counterbalancing higher reweighting for eventual
noisy examples. Gentler updating, such as by thresholding, has soon
been proposed as a line of research to improve noise handling [4].

Noise handling. In order to shed some more light on noise han-
dling, we have drilled down into the results on domain LEDeven+17
[2]. Its basis is a seven bits problem that describes the ten digits of
old pocket calculators. Examples are picked uniformly at random and
the ten possible classes and grouped in two: even / odd. Each de-
scription variable gets flipped with 10% chances, and seventeen at-
tributes are added, that are irrelevant in the strongest sense [7]. Thus,
there is a total of n = 24 description variables. Figures 2 and 3
displays cumulative margin distributions that were obtained for cou-
ple (r,T) € {2,4,6} x {10,100, 200, 1000}. The training margins
clearly display that the real AdaBoost of [6, 11, 18] is the fastest
to converge to perfect classification, followed by discrete AdaBoost
[5], and then by AdaBoostr(“us”). The testing margins display a
completely different pattern: on ten out of twelve results, the esti-
mated true risk is the lowest for AdaBoostr, and on eight out of ten,
the second best is discrete AdaBoost (with a difference best-worst
sometimes reaching 6%). Real AdaBoost [6, 11, 18] beats discrete
AdaBoost when the classifiers built get complicated: 7" > 200 and
r € {4,6}. The clear symmetric sigmoid shape (plateau) observed
on testing for real AdaBoost on these cases (which is also observable
—though less pregnant— for discrete AdaBoost, and almost not ob-
served for AdaBoosty) indicates that the confidence in classification
becomes virtually “infinite” for almost all examples, i.e. for those
that receive the right class, and also for those receiving the wrong
class. This, we think, indicates a tendency to overfit while trying to
model these noisy data. This tendency is clearly less pronounced for
AdaBoostg, and if we look at the margin curves for § < 0, the fact
that AdaBoostr’s curve are almost systematically below both others
tends to indicate that AdaBoostr performs sensibly better than both
discrete and real AdaBoosts. This is in accordance with the fact that
plotting Bayes rule’s margin curves, following the prediction of the
logistic model in (18), seems to always yield a curve shape closer
to AdaBoostr. To see this, Figure 4 plots cumulative margin distri-
butions for Bayes rule’s, for varying amounts of attribute noise in
LEDeven+17, ranging from 5% to 50% by steps of 5%. Curves were



(c) Springer—Verlag 2006. ECAI 2006

cumulative distributions of margins on training
1 1 7 1 7 1 "
Discrete Adaboost, Discrete Adaboost #£-+3 Discrete Adaboost - Discrete Adaboost -
Real Adaboost ( Real Adaboost (us, Real Adaboost (us) Real Adaboost (us)
Real AdaBoost [KW., Real AdaBoost [KW.S! Real AdaBoost [KW.SS] Real AdaBoost [KW.SS] -
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
® / ® ®
04 04 04 04
0.2 0.2 0.2 0.2
0 = 0 i 0 e
-1 08 06 -04 02 0 02 04 06 08 -1 -08 06 04 02 0 02 04 06 1 -1 -08 06 04 02 0 02 04 06 08 1 -1 -0.5 0 0.5 1
r=2 Empirical Margin distribution Empirical Margin distribution Empirical Margin distribution Empirical Margin distribution
1 1 1 - 1
Discrete Adgboost - Discrete Adaboost Discrete Adaboost -3 Discrete Adaboost
Real Adaboght/(us) Real Adaboost (u; Real Adaboost (us) Real Adaboost (us)
Real AdaBoost [W.SS] - Real AdaBoost [KW. Real AdaBoost [KW.SS] Real AdaBoost [KW.SS]
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
® ® ®
0.4 0.4 0.4 04
0.2 0.2 0.2 0.2
0 0 £ o L . |
-1 -0.5 0 0.5 1 -1 -08 06 04 02 0 02 04 06 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
r=4 Empirical Margin distribution Empirical Margin distribution Empirical Margin distribution Empirical Margin distribution
1 - - 1 - 1 - 1
Discrete Adgbgost ¥~ Discrete Adaboos Discrete Adaboost - Discrete Adaboost
Real Adabooft'(us) Real Adaboost (u, Real Adaboost (us) Real Adaboost (us)
Real AdaBoost [KW., Real AdaBoost [KW.SS Real AdaBoost [KW.SS]
0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6
® ® ® ®
04 04 04 04
0.2 0.2 0.2 0.2
0 o 0 0 it 0
-1 -0.5 0 0.5 1 -1 -08 -06 04 02 0 02 04 06 08 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
r==6 Empirical Margin distribution Empirical Margin distribution Empirical Margin distribution Empirical Margin distribution

Figure 2. Empirical margin distributions on domain LEDeven+17. An algorithm is as better than another one as its margin distribution is located below the
other for negative margin values. The empirical risk of an algorithm is approximately the intersection between its margin distribution and the line z = 0.

generated by applying the logistic prediction to random samples con-
taining 300 examples each. It is clear from these curves that the shape
that exhibits real AdaBoost as 7" or r increase, with many examples
badly classified with very large confidence, is absent from the logis-
tic prediction. Bayes rule’s, along with AdaBoostg, seem to be more
conservative in their predictions. Since the logistic model is fit by
discrete and real AdaBoosts [6], this suggests that real AdaBoost,
followed by discrete AdaBoost, seem to rapidly overfit the model.

5 Conclusion

In this paper, we have proposed a new generalization of discrete Ad-
aBoost to handle weak hypotheses with real values. Our algorithm,
AdaBoostg, departs from usual generalizations as it does not rely ex-
plicitly on the exact minimization of the exponential loss, a loss that
upperbounds the empirical risk. While we formally prove that our
generalization is a boosting algorithm in the original sense, it pro-
vides interesting computational and numerical features with respect
to former real extensions of discrete AdaBoost, as well as a gener-
alization of well-known facts about discrete boosting. Among future
works, we plan to investigate further the boosting model of learning,
and boosting algorithms in a somehow stronger approach. The clas-
sical weak and strong learning frameworks are discrete frameworks,
as the accuracy of a classifier solely relies on classes. When dealing
with real-valued predictions, an accurate framework should take into
account both the sign (class), and the magnitude (confidence) of the
prediction, as a good classifier should basically obtain large confi-
dences with right classes, and not simply right classes. The margin
error definition in (11) could be accurate to capture both notions, in

a model that would basically replace ep g in (1) by vp m.6 in (12),
with 0 < 6 < 1 user-fixed, like € and §. We believe that strong re-
sults are possible: indeed, Theorem 1 shows that all margin errors at
fixed @ < 1 vanish with 7" under the WLA. It should thus be possible
to obtain not only classifiers whose true risk is as reduced as desired,
but also whose confidences are as large as desired. Finally, Theorem
1 does not integrate (the empirical) Bayes risk. A careful integration
of this risk, or directly the margin error of Bayes rule, should help
to see the way the algorithm behaves on hard problems, and perhaps
the way it converges to Bayes rule [3].

ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for insightful com-
ments on the paper. R. Nock would like to warmly thank Sony Com-
puter Science Laboratories Inc., Tokyo, for a visiting grant during
which part of this work was done.

REFERENCES

[1] E. Bauer and R. Kohavi, ‘An empirical comparison of voting classifica-
tion algorithms: Bagging, boosting, and variants’, Machine Learning,
36, 105-139, (1999).

[2] C.L.Blake, E. Keogh, and C.J. Merz. UCI repository of machine learn-
ing databases, 1998. nttp://wmw.ics.uci.edu/~mlearn/MLRepository.html.

[3] P.Biihlmann and B. Yu, ‘Boosting with the Lo loss: regression and clas-
sification’, Journal of the American Statistical Association, 98, 324—
339, (2003).

[4] C. Domingo and O. Watanabe, ‘MadaBoost: a Modification of Ad-
aBoost’, in Proc. of the 13 " International Conference on Computa-
tional Learning Theory, pp. 180-189, (2000).



(c) Springer—Verlag 2006. ECAI 2006

cumulative distributions of margins on testing
1 1 1 - 1 -
Discrete A Discrete Adaboost Discrete Adaboost Discrete Adaboost
Real Adabor Real Adaboost (us, Real Adaboost (us) Real Adaboost (us)
Real AdaBoost | Real AdaBoost [KW.S; Real AdaBoost [KW.SS] Real AdaBoost [KW.SS]
0.8 0.8 0.8 0.8
[ o
0.6 0.6 i 0.6 0.6
® ® ®
04 04 04 04
"
e
02 02 02 02 e
o o 0 bt 0 o 0
-1 -0.5 0 0.5 1 -1 -08 06 04 02 0 02 04 06 08 1 -1 -08 06 04 02 0 02 04 06 08 1 -1 -0.5 0 0.5 1
r=2 Test margin distribution Test margin distribution Test margin distribution Test margin distribution
1 . 1 1 - 1
Discrete Adgbogst Discrete Adaboost Discrete Adaboost Discrete Adaboost
Real Adaboost (y, Real Adaboost (us) Real Adaboost (us)
Real AdaBoost [KW.§S Real AdaBoost [KW.SS Real AdaBoost [KW.SS]
0.8 0.8 0.8 0.8
0.6 0.6 0.6
® ®
0.4 0.4 0.4
0.2 0.2 0.2
[ 0 0 0
-1 -1 0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
r=4 Test margin distribution Test margin distribution Test margin distribution
1 1 - 1 - 1
Discrete Adaboos Discrete Adaboost Discrete Adaboost
Real Adaboost ( Real Adaboost (us) Real Adaboost (us)
08 08 Real AdaBoost [KW., 08 Real AdaBoost [KW.S. 08 Real AdaBoost [KW.SS]
06 06 06 0.6
© u* & '
04 04 04
0.2 0.2 0.2
0 0 [
-1 -1 0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
r==6 Test margin distribution Test margin distribution Test margin distribution Test margin distribution

Figure 3. Test margin distributions on domain LEDeven+17. An algorithm is as better than another one as its margin distribution is located below the other
for negative margin values. The estimated true risk of an algorithm is approximately the intersection between its margin distribution and the line x = 0.

0.8

0.6

%

0.4

0.2

-1 -0.5 0 0.5 1

Bayes rule margin distribution

Figure 4. Cumulative distributions of margins for Bayes rule’s prediction
with the logistic model, on LEDeven+17 with varying amounts of attribute
noise, in the set {5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%}
(see text for details).

[5] Y. Freund and R. E. Schapire, ‘A Decision-Theoretic generalization of
on-line learning and an application to Boosting’, Journal of Computer
and System Sciences, 55, 119-139, (1997).

[6] J. Friedman, T. Hastie, and R. Tibshirani, ‘Additive Logistic Regres-
sion : a Statistical View of Boosting’, Annals of Statistics, 28, 337-374,
(2000).

[7]1 G.H. John, R. Kohavi, and K. Pfleger, ‘Irrelevant features and the sub-

(8]
(9]
[10]
[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]
[21]

set selection problem’, in Proc. of the 11 ** International Conference
on Machine Learning, pp. 121-129, (1994).

M. J. Kearns and U. V. Vazirani, An Introduction to Computational
Learning Theory, M.L.T. Press, 1994.

M.J. Kearns. Thoughts on hypothesis boosting, 1988. ML class project.
M.J. Kearns and L. Valiant, ‘Cryptographic limitations on learning
boolean formulae and finite automata’, Proc. of the 21 t* ACM Sym-
posium on the Theory of Computing, 433444, (1989).

J. Kivinen and M. Warmuth, ‘Boosting as entropy projection’, in Proc.
of the 12 t* Int. Conf. on Comp. Learning Theory, pp. 134—144, (1999).
R. Nock, ‘Inducing interpretable Voting classifiers without trading ac-
curacy for simplicity: theoretical results, approximation algorithms, and
experiments’, Journal of Artificial Intelligence Research, 17, 137-170,
(2002).

R. Nock and F. Nielsen, ‘On weighting clustering’, IEEE Transasctions
on Pattern Analysis and Machine Intelligence, (2006). to appear.

B. Popescu and J. H. Friedman, ‘Predictive learning via rule ensem-
bles’, Technical report, Stanford University, (2005).

G. Ridgeway, ‘The state of Boosting’, Computing Science and Statis-
tics, 31, 172-181, (1999).

R. E. Schapire, ‘The strength of weak learnability’, Machine Learning,
197-227, (1990).

R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, ‘Boosting the
margin : a new explanation for the effectiveness of voting methods’,
Annals of statistics, 26, 1651-1686, (1998).

R. E. Schapire and Y. Singer, ‘Improved boosting algorithms using
confidence-rated predictions’, Machine Learning, 37, 297-336, (1999).
L. G. Valiant, ‘A theory of the learnable’, Communications of the ACM,
27, 1134-1142, (1984).

V. Vapnik, Statistical Learning Theory, John Wiley, 1998.

1. Witten and E. Frank, Data Mining: practical Machine Learning tools
and techniques with Java implementation, Morgan Kaufmann, 1999.



