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Learning: Setting

Given: , @a domain of observations (e.g. R",{0,1}"); n =
number of description variables;

{-1,+1}|, asetof classes (e.g. {bad,good}, {lose,win});
“—1” = negative class; “+1” = positive class;

we wish to learn a particular binary relation from A" to {1, +1}
(e.g. X = endgame configurations, classes = {lose, win}).

Framework:

@ draw a set of m examples § = {(x,y) € X x {—1,+1}}
according to distribution D (unknown but fixed);

@ learn a classifier H : X — R, so as to minimize its true risk
with high probability  (+ require learning P-time in
relevant parameters).
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Learning: Weak/Strong

True risk minimization whp (weak/strong learning)

Let €EDH — Pr(x,y)wD[Sign(H(X)) a y]
Strong: require Prg pm[ep y < €]

Weak: require Prs.pmlepn < /2 —~] > &' (v, very
small: e.g. tiny constant,
(requirements hold VD, VO < &, < 1).

be the true risk of H.
> 1 -0 (¢, 0 user-fixed);

~ 1/p(n), etc.);

Strong learning is learning as usual.

Weak learning is the “weakest”, as €p.U

nbiased coin = /2, VD.

Fundamental result (Boosting property , Schapire’90)

’Weak learning = Strong learning

, i.e. given algorithm WL

that weak learns, we can build algorit
with the sole access to WL

hm SL that strong learns
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Empirical Risks ~ Strong Learning

Sufficient conditions for Strong Learning

Let w, be the observed distribution on S, and ¢, 4 the
empirical risk  of H: ey, 1 = E(x y)ow; (Lsign(r(x))y) (1r = 1 if
7 is true, and 0 otherwise). Modulo additional conditions,
ew, 1 = 0 (H consistent with S) = Strong Learning

The direct minimization of ¢, , 4 has drawbacks (not smooth,
many potential local minima, Hardness issues).

Solution: minimize a convex, smooth upperbound

Let e, "y = E(x.y)~w, (€Xp(—YyH(X))) be the exponential loss .

Wi,

Advantage 1 : ¢ 7, is convex and smooth differentiable.

Advantage 2 |: ey, 1 < e @S Leign((x))2y < €XP(—yH(x)).

Advantage 3 |: ¢*, takes full advantage that H(x) € R.

v
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AdaBoost (FS'97, KW’'99, SS’99)

Problem

Fix H = Ht a linear combination of T classifiers (h;) from WL

Hr(x) = >, athy(x). How can we fit Hy to the min of CwsHy ?

The solution is a stagewise approach:

B fi
, rute rc - fort=1,2,...,T
3 &y o0y 1 h «W S,-W i
1 hy — WIS, wy); t - : ) exp .
2 o < argminger GSVXFH L rah? 2 o argMiNacr Cwi,ahg?
j JHi— ! 3w W exp(—yiathi(x;)).
return HT _ Zt:l cht' t+l7| Zt 3
' (V(xi,yi) €S5)
(Friedman & al.00) return Hr = Y, aghy;
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Discrete and Real AdaBoosts (FS'97, KW’'99, SS’99)

Leth; : X — B C R. AdaBoost comes with two different flavors,
depending on B... and all are boosting algorithms.

Real AdaBoost Discrete AdaBoost

fort=1,2,...,T
1 ht HWL(S,Wt),

. p
2 ’ ap <— argminger €wy,ahy

we,i exp(—yiathe(xi))

3 Wt+l| — Z[ ’

(V(xi,yi) € S)
return Hy = >, athy;

fort =1.2,...,T
1 ht HWKSW'{),

2 at < 1/2'09 ((17€W(’h()/ewt«,hl) "
£ Wi < W, exp(_ziatht(xi));
V(xi,Yi) € S)

return Hy = >, athy;

+ Any BCR;

- complexity (no closed form for
[2]), numerical stability (weights),
outside the boosting regime (risk)

R. Nock and F. Nielsen

+ Straightforward to implement,
“best off the shelf classifier in the
world™;

- restrictedto B = {—1, +1};
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Lifting to : Margins (1)

In a Real-world, prediction Hy (x) € R may be interpreted as:
@ aclass (sign(Ht(x)));
@ a confidence in the classification (|Ht (x)).

Ideally, the optimal classifier gives (i) the right class with (ii) the
largest confidence (i.e. +oc when Bayes optimum is zero).

Ex: logit prediction, H(x) = log H (Friedman & al’00).
What we want is a criterion /4 ((x,y)) integrating both the sign
and the confidence, instead of just /;;((X,Y)) = Lsign(H(x))-y-
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Lifting to : Margins (1)

A margin (of H on (x,y)) satisfies four requirements:
@ itis a function of yH(x);
@ it is monotonic increasing;
Q itise [-1,+1];
Q negative iff Lggn(Hx))zy = 1.

Margin of  on example

; _exp(yHr(x)) -1 < (good label, oo confidence)
HT((X7y)) - exp(yHr (x)) + 1 > —1 (bad label, oo confidence)

Logit brings 4, ((x,y)) = y(2Prly = +1|x] — 1) (Friedman & al.00).
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Lifting to : Margin error

Let —1 < ¢ < 1. The margin error , vy, 1, 4, is the proportion of
examples whose margin does not exceed 6:

Yy e = Ecyyows (La, ((xy))<0)

We have |ew, 1 < v e 0 | T —
Hr is as good as: Veoy . Hop 0 —
@ 1y, 1,0 IS small,

|

e for any 0. R
rawe. better Hr}
(i.e. the distribution of I 1oyt
margins — curve 1y 1) S : 5 - \:l
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Lifting to : Our Real Generalization of AdaBoost

“Forget” the direct minimization of the exponential loss
Rather focus on the margin error .

AdaBoost (Our generalization)

fort =1,2,...,T

Real AdaBoost 1 hy — WIS, wy);

fort=1,2,...,T 2 ap — 2,%1* log ifff[?
1 hy — WIS, wy); 3 Wi — Wi X H‘”yﬂi‘(?))/h‘*,w;
2 o argminaer ey p . .
3 Wepe W EXP(=Yianhy(X1))/Ze, ¥i: return Hr = >/ | athy; )
return Hr = 31 axhy; h{ = max y)es [hi(x)| € R™

pt = Egx yyow, (YN (x)/h?) € [-1, +1]
(note: yhi(x)/h{ = ¢, ((x,y)) is also a
margin on example (x,y)).
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Properties (1): AdaBoost boosts all margins

Recall that 14, 14, ¢ counts the % of examples with margin < 6.

VB C R

V0 € [-1,+1]|, the margin error of Hy satisfies:

.
1+60 1
Uy Hr,o < (1_9> X exp (2 ZM?)

@ Suppose IVt > 1, || > y‘for

some small v > 0. exp(—TH2/2) -
@ Then I y4
Yy Hro < F(0) x exp(—ng). /‘\ .
@ AsT /, thelhs — 15— ,1. upperbpund for vy, w0

-1 0 +1
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Properties (I1): AdaBoost is a boosting algorithm

Recall that (vt > 1, || > 7) = (le.HT,H <1(0) x eXp(_ng)).

@ Run AdaBoosty with T = Q (%2 log —f(®) );

min; Wy ;

@ use with ¢ = 0 to prove ¢, 1, = 0,
@ (+more material) = AdaBoosty is a boosting algorithm

Weak Learning is in the assumption

B={-1,+1} BCR
Random Unbiased coin Uniform € [—b, +b]
Satisfies Ew,,. = /2 u =0
i Cwphy < Y2 — /2
Weak Learning { wn > Yot || >
Property ’WL for B C R generalizes WL for B = {—1,+1} ‘

For simplicity, we do not plug “Prs.pm[.] > ¢ it would not change anything.
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Properties (I11): Benefits of AdaBoost

AdaBoosty is a generalization of Discrete AdaBoost (perfect
match if B = {—1,+1}).

Compared to other Real AdaBoosts:

@ all the algorithm is in closed form (no approximation = no
complexity penalty);
@ it works properly even on limit regimes :
e when h; takes oo values (e.g. DT + logit at the leaves);
yields e.9. fu = 37 (x;) =00 WiSIGN(Yihe (X1));
e when ¢y, n, — 0,1 (no weight change !);
@ the computation of the leveraging coefficients («;) can be
delayed towards the end of learning (reduces numerical
instabilities);
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Properties (IV): A well-known fact lifted to

B ={-1,+1} Perhaps the most popular fact about (Discrete
Ada)Boosting is that examples correctly (resp.
badly) classified by h; get their weight decreased
(resp. increased) (holds when ¢, ,, < 1/2;
otherwise, reverses the polarity).

B =R In AdaBoostr, examples that have their weight
decreased are those for which:

Cn ((x,Y)) =

The weak classifier's “local margin” exceeds
its average margin  (holds when i; > 0;
otherwise, reverses the polarity).
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Experiments (1): Experimental setting

We pick 25 domains, most from the UCI repository.

@ 10-fold stratified cross-validation, T € {10,50};

@ WL returns monomials with fixed length (Rank-1 DT with
fixed depth, Nock’02);

@ we compare three algorithms:

© Discrete AdaBoost (Freund & Schapire’97),

@ AdaBoosty,

© Real AdaBoost (Kivinen & Warmuth’99, Schapire &
Singer'99),
with o, approximated up to relative error < 10, and using
results from (Nock & Nielsen’06) to make the search faster;

Execution time

The implementations of Real AdaBoost and AdaBoostr use the same
routines (same optimization).

The execution time for AdaBoostr was smaller by orders of magnitude .
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Experiments (I1): General results

(see paper for details)

T =10 T =50
D U T|D U T
#best 7 11 9|7 15 6
#second | 9 6 5|9 4 5
#worst 9 8 11,9 6 14

D = Discrete AdaBoost
U = AdaBoostp
T = Real AdaBoost

As T increases, AdaBoosty tends to become the winner.

Hard domains

On harder simulated domains (class/attribute noise, irrelevant attributes),
AdaBoostr becomes the clear winner as T increases.

We think that this might be due to our gentler weight update rule.
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Experiments (111): Margins

T =10 T =100 T =200

04
02
cumulative distributions of margins on testing
, |

Dis j Disc 4
08 o 1 03
06 0.6
04 04 uf)
0.2 0.2

-1 1 -1 -0.5 0 0.5 -l 05 0 05 1

=3

= 6 litterals per rule. Recall that 14, 1, » Should be as small as possible, all
the more for 6 < 0.




Conclusion

@ Since we deal with real-valued predictions, learning should
take into account both the sign and the confidence in the

model:
Strong: require Prspm[vpr.e < &] > 1 — 4 (e, 6, 0 user-fixed);
Weak: require Prspm[ut > 7] > 0’ (v, ¢ very small: e.g. tiny
constant, ~ 1/p(n), etc.);
= What happens ?
@ Integrate Bayes rule in the bounds, and investigate
convergence / stability.
@ Multiclass extensions.

@ etc.
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