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Learning: Setting

Problem

Given: X , a domain of observations (e.g. Rn, {0, 1}n); n =
number of description variables;

{−1,+1} , a set of classes (e.g. {bad , good}, {lose, win});
“−1” = negative class; “+1” = positive class;

we wish to learn a particular binary relation from X to {−1,+1}
(e.g. X = endgame configurations, classes = {lose, win}).

Framework:

draw a set of m examples S = {(x , y) ∈ X × {−1,+1}}
according to distribution D (unknown but fixed);

learn a classifier H : X → R, so as to minimize its true risk
with high probability (+ require learning P-time in
relevant parameters).
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Learning: Weak/Strong

True risk minimization whp (weak/strong learning)

Let εD,H = Pr(x ,y)∼D[sign(H(x )) 6= y ] be the true risk of H.

Strong: require PrS∼Dm [εD,H ≤ ε] ≥ 1− δ (ε, δ user-fixed);

Weak: require PrS∼Dm [εD,H ≤ 1/2− γ] ≥ δ′ (γ, δ′ very
small: e.g. tiny constant, ≈ 1/p(n), etc.);

(requirements hold ∀D, ∀0 < ε, δ < 1).

Strong learning is learning as usual.

Weak learning is the “weakest”, as εD,unbiased coin = 1/2,∀D.

Fundamental result (Boosting property , Schapire’90)

Weak learning =⇒ Strong learning , i.e. given algorithm WL

that weak learns, we can build algorithm SL that strong learns
with the sole access to WL.
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Empirical Risks & Strong Learning

Sufficient conditions for Strong Learning

Let w 1 be the observed distribution on S, and εw 1,H the
empirical risk of H: εw 1,H = E(x ,y)∼w 1

(1sign(H(x )) 6=y ) (1π = 1 if
π is true, and 0 otherwise). Modulo additional conditions,

εw 1,H = 0 (H consistent with S)⇒ Strong Learning

The direct minimization of εw 1,H has drawbacks (not smooth,
many potential local minima, Hardness issues).

Solution: minimize a convex, smooth upperbound

Let ε
exp
w 1,H = E(x ,y)∼w 1

(exp(−yH(x ))) be the exponential loss .

Advantage 1 : ε
exp
w 1,H is convex and smooth differentiable.

Advantage 2 : εw 1,H ≤ ε
exp
w 1,H , as 1sign(H(x )) 6=y ≤ exp(−yH(x )).

Advantage 3 : ε
exp
w 1,H takes full advantage that H(x ) ∈ R.
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AdaBoost (FS’97, KW’99, SS’99)

Problem

Fix H = HT a linear combination of T classifiers (ht ) from WL:
HT (x ) =

∑T
t=1 αtht(x ). How can we fit HT to the min of ε

exp
w 1,HT

?

The solution is a stagewise approach:

Brute force

for t = 1, 2, ..., T

1 ht ←WL(S, w 1);

2 αt ← arg minα∈R εexp
w 1,Ht−1+αht

;

return HT =
∑T

t=1 αtht ;

(Friedman & al.’00)

AdaBoost

for t = 1, 2, ..., T

1 ht ←WL(S, w t );

2 αt ← arg minα∈R ε
exp
w t ,αht

;

3 wt+1,i ←
wt,i exp(−yiαt ht (x i ))

Zt
;

(∀(x i , yi) ∈ S)

return HT =
∑T

t=1 αtht ;
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Discrete and Real AdaBoosts (FS’97, KW’99, SS’99)

Let ht : X → B ⊆ R. AdaBoost comes with two different flavors,
depending on B... and all are boosting algorithms.

Real AdaBoost

for t = 1, 2, ..., T

1 ht ←WL(S, w t);

2 αt ← arg minα∈R εexp
w t ,αht

;

3 wt+1,i ←
wt,i exp(−yiαt ht (x i ))

Zt
;

(∀(x i , yi) ∈ S)

return HT =
∑T

t=1 αtht ;

+ Any B ⊆ R;

- complexity (no closed form for
[2]), numerical stability (weights),
outside the boosting regime (risk)

Discrete AdaBoost

for t = 1, 2, ..., T

1 ht ←WL(S, w t);

2 αt ← 1/2 log ((1− εw t ,ht )/εw t ,ht ) ;

3 wt+1,i ←
wt,i exp(−yiαt ht (x i ))

Zt
;

(∀(x i , yi) ∈ S)

return HT =
∑T

t=1 αtht ;

+ Straightforward to implement,
“best off the shelf classifier in the
world”;

- restricted to B = {−1, +1};
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Lifting to R: Margins (I)

In a Real-world, prediction HT (x ) ∈ R may be interpreted as:

a class (sign(HT (x )));

a confidence in the classification (|HT (x )|).
Ideally, the optimal classifier gives (i) the right class with (ii) the
largest confidence (i.e. +∞ when Bayes optimum is zero).
Ex : logit prediction, H(x ) = log Pr[y=+1|x ]

Pr[y=−1|x ] (Friedman & al.’00).

What we want is a criterion `H((x , y)) integrating both the sign
and the confidence, instead of just `H((x , y)) = 1sign(H(x )) 6=y .
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Lifting to R: Margins (II)

Margin `H((x , y))

A margin (of H on (x , y)) satisfies four requirements:
1 it is a function of yH(x );
2 it is monotonic increasing;
3 it is ∈ [−1,+1];
4 negative iff 1sign(H(x )) 6=y = 1.

Margin of HT on example (x , y)

`HT
((x , y)) =

exp(yHT (x ))− 1
exp(yHT (x )) + 1

{
≤ 1 (good label,∞ confidence)
≥ −1 (bad label,∞ confidence)

Logit brings `HT ((x , y)) = y(2 Pr[y = +1|x ]− 1) (Friedman & al.’00).
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Lifting to R: Margin error

Definition

Let −1 ≤ θ ≤ 1. The margin error , νw 1,HT ,θ, is the proportion of
examples whose margin does not exceed θ:

νw 1,HT ,θ = E(x ,y)∼w 1
(1`HT

((x ,y))≤θ)

We have εw 1,H ≤ νw 1,HT ,0 .

HT is as good as:

νw 1,HT ,θ is small,

for any θ.

(i.e. the distribution of
margins→ curve 1θ≤+1)
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Lifting to R: Our Real Generalization of AdaBoost

Principle

“Forget” the direct minimization of the exponential loss .
Rather focus on the margin error .

Real AdaBoost
for t = 1, 2, ..., T

1 ht ← WL(S, w t);

2 αt ← arg minα∈R εexp
w t ,αht

;

3 wt+1,i←wt,i exp(−yiαtht(x i))/Zt ,∀i ;

return HT =
PT

t=1 αtht ;

AdaBoostR (Our generalization)
for t = 1, 2, ..., T

1 ht ← WL(S, w t);

2 αt ← 1
2h?

t
log 1+µt

1−µt
;

3 wt+1,i ← wt,i × 1−(µt yi ht (x i ))/h?
t

1−µ2
t

,∀i ;

return HT =
PT

t=1 αtht ;

h?
t = max(x ,y)∈S |ht(x )| ∈ R+

µt = E(x ,y)∼w 1(yht(x )/h?
t ) ∈ [−1, +1]

(note: yht(x )/h?
t = `ht ((x , y)) is also a

margin on example (x , y)).
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Properties (I): AdaBoostR boosts all margins

Recall that νw 1,HT ,θ counts the % of examples with margin ≤ θ.

Theorem

∀B ⊆ R, ∀θ ∈ [−1,+1] , the margin error of HT satisfies:

νw 1,HT ,θ ≤
(

1 + θ

1− θ

)
× exp

(
−1

2

T∑
t=1

µ2
t

)

Suppose ∀t ≥ 1, |µt | ≥ γ for
some small γ > 0.

Then
νw 1,HT ,θ ≤ f (θ)× exp(−Tγ2

2 ).

As T ↗, the lhs→ 1θ≤+1.
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Properties (II): AdaBoostR is a boosting algorithm

Recall that (∀t ≥ 1, |µt | ≥ γ)⇒
(
νw 1,HT ,θ ≤ f (θ)× exp(−Tγ2

2 )
)

.

Run AdaBoostR with T = Ω
(

1
γ2 log f (θ)

mini w1,i

)
;

we obtain νw 1,HT ,θ = 0 ;

use with θ = 0 to prove εw 1,HT
= 0;

(+more material)⇒ AdaBoostR is a boosting algorithm .

Weak Learning is in the assumption |µt | ≥ γ

B = {−1, +1} B ⊆ R
Random Unbiased coin Uniform ∈ [−b, +b]
Satisfies εw t ,. = 1/2 µt = 0

Weak Learning


εw t ,ht ≤ 1/2− γ/2

εw t ,ht ≥ 1/2 + γ/2
|µt | ≥ γ

Property WL for B ⊆ R generalizes WL for B = {−1, +1}

For simplicity, we do not plug “PrS∼Dm [.] ≥ δ′”: it would not change anything.
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Properties (III): Benefits of AdaBoostR

AdaBoostR is a generalization of Discrete AdaBoost (perfect
match if B = {−1,+1}).

Compared to other Real AdaBoosts:

all the algorithm is in closed form (no approximation = no
complexity penalty);
it works properly even on limit regimes :

when ht takes∞ values (e.g. DT + logit at the leaves);
yields e.g. µt =

∑
i:|ht (x i )|=∞ w1,isign(yiht(x i));

when εw t ,ht → 0, 1 (no weight change !);

the computation of the leveraging coefficients (αt ) can be
delayed towards the end of learning (reduces numerical
instabilities);
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Properties (IV): A well-known fact lifted to R

Weight modification rule

B = {−1,+1} Perhaps the most popular fact about (Discrete
Ada)Boosting is that examples correctly (resp.
badly) classified by ht get their weight decreased
(resp. increased) (holds when εw t ,ht ≤ 1/2;
otherwise, reverses the polarity).

B = R In AdaBoostR, examples that have their weight
decreased are those for which:

`ht ((x , y)) ≥ µt

The weak classifier’s “local margin” exceeds
its average margin (holds when µt ≥ 0;
otherwise, reverses the polarity).
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Experiments (I): Experimental setting

We pick 25 domains, most from the UCI repository.

10-fold stratified cross-validation, T ∈ {10, 50};
WL returns monomials with fixed length (Rank-1 DT with
fixed depth, Nock’02);
we compare three algorithms:

1 Discrete AdaBoost (Freund & Schapire’97),
2 AdaBoostR,
3 Real AdaBoost (Kivinen & Warmuth’99, Schapire &

Singer’99),
with αt approximated up to relative error ≤ 10−6, and using
results from (Nock & Nielsen’06) to make the search faster;

Execution time
The implementations of Real AdaBoost and AdaBoostR use the same
routines (same optimization).

The execution time for AdaBoostR was smaller by orders of magnitude .
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Experiments (II): General results

(see paper for details)

T = 10 T = 50
D U T D U T

#best 7 11 9 7 15 6
#second 9 6 5 9 4 5
#worst 9 8 11 9 6 14

D = Discrete AdaBoost
U = AdaBoostR
T = Real AdaBoost

As T increases, AdaBoostR tends to become the winner.

Hard domains
On harder simulated domains (class/attribute noise, irrelevant attributes),
AdaBoostR becomes the clear winner as T increases.

We think that this might be due to our gentler weight update rule.
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Experiments (III): Margins

T = 10 T = 100 T = 200
cumulative distributions of margins on training

cumulative distributions of margins on testing

r = 6 litterals per rule. Recall that νw 1,HT ,θ should be as small as possible, all

the more for θ ≤ 0.
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Conclusion

Since we deal with real-valued predictions, learning should
take into account both the sign and the confidence in the
model:

Strong: require PrS∼Dm [νD,H,θ ≤ ε] ≥ 1− δ (ε, δ, θ user-fixed);
Weak: require PrS∼Dm [µt ≥ γ] ≥ δ′ (γ, δ′ very small: e.g. tiny

constant, ≈ 1/p(n), etc.);

⇒ What happens ?

Integrate Bayes rule in the bounds, and investigate
convergence / stability.

Multiclass extensions.

etc.
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