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Abstract

The Voronoi diagram of a point set is a fundamental geo-
metric structure that partitions the space into elementary
regions of influence defining a discrete proximity graph and
dually a well-shaped Delaunay triangulation. In this pa-
per, we investigate a framework for defining and building
the Voronoi diagrams for a broad class of distortion mea-
sures called Bregman divergences, that includes not only
the traditional (squared) Euclidean distance, but also vari-
ous divergence measures based on entropic functions. As a
by-product, Bregman Voronoi diagrams allow one to define
information-theoretic Voronoi diagrams in statistical para-
metric spaces based on the relative entropy of distributions.
We show that for a given Bregman divergence, one can de-
fine several types of Voronoi diagrams related to each other
by convex duality or embedding. Moreover, we can always
compute them indirectly as power diagrams in primal or dual
spaces, or directly after linearization in an extra-dimensional
space as the projection of a Euclidean polytope. Finally, our
paper proposes to generalize Bregman divergences to higher-
order terms, called k-jet Bregman divergences, and touch
upon their Voronoi diagrams.

1 Introduction and prior work

The Voronoi diagram Vor(S) of a set of n points S =
{p1,...,Pn} of the d-dimensional Euclidean space R?
is defined as the cell complex (ie., collection of cells
of dimensions ranging from 0D vertices to (d — 1)D
facets) induced by its Voronoi regions {Vor(p:) }ie(1,..n}
and their subfaces, where Vor(p;) is the portion of
points of RY closer to p; than to any other point of
St Vor(pi) € {x € R? | [|pix|| < [[p;x|| ¥ p; € S}.
Points {p; }; are called the Voronoi sites or Voronoi gen-
erators. Computational geometers have focused at first
on ordinary Voronoi diagrams [3] by considering the

Ly norm ||x|]2 = 2?21 x? as the distance function
(ée., vector point sets S lying in the Euclidean space
equipped with the Euclidean distance). The combina-
torics and efficient algorithms for computing Voronoi di-

agrams in other metric spaces such as using the L; norm
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[Ix|]1 = Z?Zl |z;| (Manhattan distance) or Lo, norm
||%||oc = max;c1,... 4 i have later been reported [7, 3].
Klein [14] further presented an abstract framework for
describing and computing the fundamental structures
of abstract Voronoi diagrams.

In artificial intelligence, machine learning tech-
niques also rely on geometric concepts for building clas-
sifiers in supervised problems (eg., linear separators,
oblique decision trees, etc.) or clustering data in un-
supervised settings (eg., kmeans, support vector clus-
tering, etc.). However, the considered data sets S and
their underlying spaces X are usually not metric spaces.
That is, the distance function needs to be relaxed to a
(pseudo-)distance function that does not necessarily sat-
isfy anymore the symmetry nor the triangle inequality.
To measure the (dis)similarity between any pair (x,y)
of elements of X', we introduce the notion of distortion
between them by using a divergence measure. For exam-
ple, in statistical spaces X, vector points store in their
coordinates parameters of the parametric distribution
laws. Defining the “distance” between two such points
(divergence between the corresponding distributions) is
more delicate. Very few works have tackled an indepth
study of Voronoi diagrams and their applications for
such a kind of statistical spaces. Notable exceptions
are the work of Onishi and Takayama [21] that focused
on the Riemannian construction of the Voronoi diagram
in the hyperbolic Poincaré half-plane' and the work of
Leibon and Letscher [15] that focuses on Delaunay tri-
angulations and Voronoi diagrams for Riemannian man-
ifolds.

In this paper, we give a thorough treatment of Breg-
man Voronoi diagrams which elegantly unifies the ordi-
nary Euclidean Voronoi diagram and statistical Voronoi
diagrams. This is all the more important even for or-
dinary Voronoi diagrams as Euclidean point location of
sites are usually observed in noisy environments (e.g.,
imprecise point measures in computer vision experi-
ments), and “noise” is often modelled by means of Nor-
mal distributions (“Gaussian noise”).

To the best of our knowledge, the closest works with
respect to statistical Voronoi diagrams to this Bregman

IThe hyperbolic Voronoi diagram is also concisely described

in [7], pp. 451-454.
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Figure 1: Visualizing the Bregman divergence for the
squared Euclidean distance L3.

Voronoi study is the 4-page short paper of Onishi and
Imai [20] which relies on Kullback-Leibler divergence of
dD multivariate Normal distributions to study combi-
natorics of their Voronoi diagrams, and subsequently
the 2-page video paper of Sadakane et al. [24] which de-
fines the divergence implied by a convex function and
its conjugate, and present the Voronoi diagram with fla-
vors of information geometry [1]. Our study of Bregman
Voronoi diagrams generalizes these preliminary studies
using a broader concept of divergence: Bregman diver-
gences [8, 4] that do not rely ezplicitly on convex conju-
gates.

2 Bregman divergences

2.1 Definition Bregman? divergences [8] are param-
eterized families of distortion measures defined on a con-
vex domain X C R¢ for strictly convex and differen-
tiable functions F' on int(X). Informally speaking, a
Bregman divergence Dy is defined as the tail of a Taylor
expansion of a strictly convex and differentiable function

F: Dp(p.q) & F(p) — F(q) - (p — q, V(q))where
Vr denotes the gradient operator, and (-,-) the inner
product (dot product). More precisely, we require F' to
be of Legendre-type (smooth). The strict convexity of
F implies that Dp(p,q) > 0 Vp Vq with Dr(p,q) =0
iff p = q (positive definiteness). Bregman divergences
unify the squared Euclidean distance (L3 as depicted
in Figure 1), several common distances such as Ma-
halanobis (popular in computer vision, also known as
the generalized quadratic distance), and more impor-

?Lev M. Bregman historically pionneered this notion in his

seminal optimization work [8] (convex objective function to min-
imize under a set of linear constraints).

tantly yield various information measures based on en-
tropic functions such as Kullback-Leibler (Shannon en-
tropy) or Itakura-Saito (Burg entropy, commonly used
in sound processing).

Multivariate Bregman divergences Dp can be cre-
ated from univariate Bregman functions coordinatewise
as F(x) = Zgzl fi(z;) with Ve = (f{,..., f}) and
Vet = ((f)7L ., ()Y the reciprocal gradient:
Vr toVp=VpoVp =1 (with fjofj_1 = fj_lofj =
i Vj € {1,...,d} the identity function i(z) = z). Com-
mon 1D Bregman divergences [4] are:

Squared Euclidean distance. D¢(p,q) = (p — ¢)*
with f = 22 defined on domain X = R (f’ = 2z and
()t =9).

Relative entropy (Kullback-Leibler divergence).
D¢(p,q) = plogg — p+ ¢ with f = zlogz the Shan-
non entropy on X = Rt (f =logz + 1 and (f/)~! =
exp(z — 1)).

Itakura-Saito divergence. D¢ (p,q) = % — logg -1
with f = —logz the Burg entropy on X = RTx
(f' = —2 and (f)"' = ~1).

Exponential divergence. Djs(p,q) = exp(p) —
exp(q) — (p — q)exp(q) with f = expzr on X = R
(f' =expx and (f')~! =logx).

Because the sum of convex functions is again a
convex function, Bregman divergences can also be built
by adding convex functions to create new generator
functions.

2.2 Bregman divergences for statistical distri-
butions A parametric statistical space © is a diver-
gence space where vector points 6 represent the pa-
rameters of parametric distributions. The dimension
d of the space coincides with the (finite) number of
free parameters of the distribution laws. A large class
of distribution families called the exponential fami-
lies [1] admits the same canonical probabilistic dis-
tribution function: p(z|@) = h(z)Z(0)exp{(0,f(x))}
(with [*°_p(z|@)dz = 1). Exponential families include
many famous distribution laws such as Poisson, Nor-
mal (univariate or multivariate Gaussian) and multi-
nomial distributions. Vector f(z) represents the suffi-
cient statistics and vector @ stores the natural parame-
ters. The Kullback-Leibler divergence (relative entropy)
is an information-theoretic measure between two sta-
tistical distributions f and g defined as KL(f]|g) def

[, f(x)log g Eg dz. The statistical measure is not nec-
essarily symmetric nor does the triangle inequality
hold. The Kullback-Leibler divergence of any two mod-
els of an exponential family with respective parame-
ters @, and 0, is obtained from the Bregman diver-

gence by choosing F'(0) = —log Z(0). This yields the




amount of information measure between two distribu-
tions of the same exponential family: KL(6,||0,) =
Dp(8,,6,) = (6, — 0,,60,[f]) + log Z9) with 6,[f] =

Z(6p)
I, Zf((gz) exp{(0,,f(x))}dz]. The coordinates of vector

0,[f] are called the expectation parameters.

In summary, Bregman divergences include the
squared Euclidean distance (Euclidean space) and the
Kullback-Leibler divergence (statistical spaces). Note
that in information geometry [1], statistical manifold
properties are studied by the Riemannian geometry in-
duced by the Fischer metric [1] of the considered expo-
nential family. Bregman divergences have proven useful
for a broad spectrum of applications in computer sci-
ence and computational sciences. Fundamental appli-
cations of Bregman divergences are found in statistical
inferences of generalized linear models.

3 Bregman Voronoi diagrams

3.1 First-type and second-type Bregman
Voronoi diagrams Because Bregman divergences are
not necessarily symmetric, we associate to each site
pi two types of functions, namely D;(x) = Dp(x,p:)
or Di(x) = Dp(pi,x). The minimization diagram
min; D;(x) of the D;; ¢ = 1,...,n, is called the
Bregman Voronoi diagram of the first type of S, which
we denote by vorg(S). Similarly, the minimization
diagram of the D}, i = 1,...,n, is called the Bregman
Voronoi diagram of the second type of &, which we
denote by vorn(S). A cell in vorp(S) is associated

to each site p; and is defined as vorp(p;) def {x €
X | Dr(x,pi) < Dr(x,p;) ¥p; € S}. A cell in
vor’z(S) is associated to each site p; and is equivalently

defined as above with permuted divergence arguments:

vor’z(p;) def {x € X | Dr(pi,x) < Dp(p;,x) Vp; € S}.

Figure 2 illustrates the Bregman Voronoi diagrams of
point sets for the Kullback-Leibler (relative entropy)
and Itakura-Saito divergences. The ordinary Euclidean
Voronoi diagram is a Bregman Voronoi diagram since
Vor(8§) = vorp(S) = vorz(S) for F(x) = Y5, z7, and
in fact, for any strictly monotonically increasing family
of distance functions.

Let H(p,q) = {x € X | Dr(x,p) = Dr(x,q)} be
the Bregman bisector of first-type. Similarly, define the
second-type bisector as H'(p,q) = {x € X | Dp(p,x) =
Dp(q,x)}. These bisectors are matching hyperplanes
in the FEuclidean case; In the general case, a neat
characterization follows from the Legendre-Fenchel con-
vex duality. Let F* be the Legendre conjugate of
F obtained by the Legendre-Fenchel transformation
F*(x) =sup{(x,y) = F(y) |y € ¥} = (x, V& ' (x)) -
F(Vr !(x)). This transformation yields a symmet-
ric one-to-one mapping, with (F*)* = F. Moreover,
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Figure 2: First-type affine Bregman Voronoi diagram
(blue), second-type Bregman Voronoi diagram (green)
and symmetrized Bregman Voronoi diagram (red) for
the Kullback-Leibler relative entropy and Itakura-Saito
divergences.

since F'* is strictly convex and differentiable (provided
strictly convex and differentiable F'), we can associate
a dual Bregman divergence Dp~ to Dp using the con-
jugate function F*, and we have the following equality:
Dp(x,y) = F(x) + F*(y') = (x,¥') = Dp-(y', x") with
x' = Vp(x) and y' = Vp(y). We note VpX = {x' =
Vi) |xe€ X}, and Sy, = {Vp(p) | p € S} the gra-
dient point set. With the help of these tools, we obtain
the following lemma (see Fig. 3):

LEMMA 3.1. The first-type Bregman bisector of p and
q for divergence Dp is a hyperplane in X, of equation:
H(p,q): (x,p' = q)+F(p)—(p,p") —F(q)+({a,q) =
0 (). The second-type Bregman bisector (H*) of p and
q is the reciprocal of the first-type Bregman bisector for
the gradient point set Sv,, and dual divergence Dp~.
As such, its image by Vg is always a hyperplane in
VeX.

Proof. A point x belongs to the first-type bisector
H(p,q) iff Dp(x,p) = Dr(x,q). Simplifying for x
brings (%), a hyperplane since the equation may be
shortened as (x,dpq) + kpq = 0, with dpq = p' — d’
a vector and kpq = F(p) — (p,p’) — F(q) + (q,q") a
constant. Now, for the second-type Bregman bisector,
remark that Dp(p,x) = Dr(q,x) iff Dp«(x',p') =
Dp«(x',q'). Thus, the second-type Bregman bisector
is the reciprocal of the first-type Bregman bisector for
the gradient point set Sv,, computed using the dual
divergence Dp«. Note that the equation of the second-
type bisector is H* : (x',q—p) + F(p) — F(q) = 0.
That is, linear in the gradient space. (Therefore, we do
not require to compute the Legendre conjugate F* of F
to describe the second-type bisector.)

COROLLARY 3.1. The linear equation of the first-
type bisector for the Kullback-Leibler divergence as-
sociated with the exponential family is: H(0x[f])
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Figure 3: Three Itakura-Saito bisectors: first-type
(red), second-type (blue) and third-type (green). The
first-type Bregman bisector is always a linear separator.
The second-type bisector is curved in the primal space
but linear in the dual Legendre-Fenchel space Vg X.

0,),0«[f]) + log ZEZZ; = 0 (linear in the expec-

<(9p -
tation parameter variable Ox[f]). The second-type bisec-
tor is given by H' : (0x,04[f] — 0p[f]) + (0p, 0p[f]) —
(04, 04[f]) +log ggz:g =0 (linear in the natural param-
eter variable 0x).

The construction duality unveiled in Lemmata 3.1
and 3.3 for bisectors also hold for Bregman Voronoi
diagrams, as follows:

LEMMA 3.2. The first-type Bregman Voronoi diagram
is an affine diagram. The second-type curved Breg-
man Voronoi diagram is dual to the first-type Breg-
man Voronoi diagram of the gradient point set Sv,.,
and vice-versa. That is, vor’(S) = vorp«(Sv,) and
vorp(S) = vorp. (Sv,. ).

Proof. Let us write the definition of the first-type Breg-
man Voronoi region of site p;: vorp(p;) = {x €
X | Dp(x,pi) < Drp(x,p;) Vp; € S} Introducing
the dual divergence equality: Dp(x,y) = Dp«(y’,x'),

we get vorp(p;) = {x € Xy, | Dp-(p,,x) <
Dp-(p},x') Vp; € Sv,.} = vork.(p;). That is:
vorp(S) = vork.(Sv,) (we omit the “dual” proof

vor'’n(S) = vorp«(Sy,.) that follows the same path).

Hence, to construct the second-type curved Breg-
man Voronoi diagram, we first convert the point set
to its gradient set Sv,., and consider the affine Breg-
man Voronoi diagram using the dual Bregman diver-
gence. Then we convert back the dual Bregman Voronoi
diagram using the reciprocal gradient function V.
Building (first- or second-type) Bregman Voronoi di-
agrams thus reduces to constructing (primal or dual)
affine Voronoi diagrams.

Before closing this section, we pursue the charac-
terization of Bregman bisectors. Define 1(p,q) = {x €
X:3IAeRx=Ap+ (1 —-Xq} and c(p,q) = {x €
X 3N e Rx' = Ap’ + (1 — Nd'}. In the Euclidean

case (choosing f(x) = 12—2), 1(p,q) and ¢(p, q) are iden-
tical; they are orthogonal to bisector H in the FEu-
clidean projections of p and q on H. For Bregman
divergences, these two lines l(p,q) and c(p,q) appear
to be different, yet we show that they enjoy a simi-
lar relationship as the one for the first and second-type
Bregman bisectors (Lemma 3.1). First, define the Breg-
man orthogonal projection on H for some x € X as
Tx = argmineey Dp(c,x). This projection is unique
and (c, 7y, x) satisfies the generalized Pythagorean the-
orem [13]: Dp(c,7x) + Dp(mx,x) = Dp(c,x),Vc € H.
As such, it generalizes the conventional Euclidean or-
thogonal projection, and we still have mp = mq. Other-
wise indeed, we would have Dp(mq, p) = Dr(7q, 7p) +
Dp(mp,P) > Dp(7p, p); since Dp(7q,P) = Dr(7q,q)
and Dp(7p,p) = Dr(7p, q) (definition of the bisector),
we would have Dp(mq,q) > Dp(mp,q), contradicting
the fact that mq is the projection of q on H. Finally,
we say that I C X is Bregman orthogonal to J C X
(INJ#£Difvxe I,LwrelIndJceJ, (c,mx) satis-
fies the generalized Pythagorean theorem, that can be
rewritten as (¢ — mwy, 7w, — X') = 0.

LEMMA 3.3. ¢(p,q) is Bregman orthogonal to H. H*
is Bregman orthogonal to 1(p,q).

Proof. Remark first that c(p,q) N H # (. Indeed,
consider for example the Bregman orthogonal projection
mp of p onto H. It may be retrieved via the Lagrangian
L(c,\) = Dr(c,p) + A({c,p’ —d') + F(p) — (p,P’) —
F(q) + (q,q’)), with A a Lagrange multiplier. Solving
VeL(c,A)|e=r, = 0 yields 7, —p’ + A(p' — q') = 0,
ie. w, = (1-Ap' + A € c(p,q) N H. Now,
fix any distinct x € c(p,q), ® € c(p,q) N H and
c e H. Tt follows «’ — x' = B(p’ — ') (B8 € R*), and,
using the equation of H, we obtain (¢ — w,n’ —x') =
Blle,p’ = q) = (m,p' —q)) = B(-F(p) + (p,P') +
F(a)—(q,d') + F(p)—(p.p") — F(a) +({a,q')) =0, i.c.
(c,m,x) satisfies the generalized Pythagorean theorem.

Now, consider any x € H* and g, its Breg-
man orthogonal projection on 1(p,q). We have
(p — mx, . —x') =0 and (q — 7y, 7, — X’) = 0, which
yields (p —q,7,) = (p—q,x’). Using the equation
of H* (Lemma 3.1), it follows that mx € H*, and
I(p,q) N H* # (. Now, fix any distinct ¢ € 1(p,q),
7 € l(p,q) N H* and x € H*. It follows ¢c — 7w =
B(p — q) (B € R*). Using the equation of H*, we ob-
tain (c—m, 7' —x') = p{{(7,p—q) — (X, p—q)) =
B(F(p)— F(q) — F(p) + F(q)) =0, i.e. (c,,x) satis-
fies the generalized Pythagorean theorem.

Lemma 3.1 shows that the definitions of the first
and second-type Bregman bisectors permute each others
by Vg, and so their constructions are dual to each



Figure 4: Bregman bisectors and their relationships
with respect to 1(p,q) and c(p, q), for the I-divergence
(left) and Itakura-Saito divergence (right, d = 2).
Bold curves become linear in VpX; colors depict the
orthogonality relationships of Lemma 3.3 (see text for
a and b).

other. This is the same situation for ¢(p, q) and l(p, q).
Figure 4 displays an example, in which a and b are
defined by H* Nc(p,q) = {a} and H N1(p,q) = {b},
ie. a = (1—a)p’+aq and b = ap + (1 — a)q,
with @« = Dp(q,p)/(Dr(p,a)+ Dr(q,p)). Since linear
in the gradient space, c(.,.) defines the geodesics of
VrX. As such, it also defines the geodesics of the
first-type Voronoi diagram, those curves that allow
one to define dynamically Voronoi diagrams by time-
dependent growth regions from the generators. This is
formally stated in the following Lemma.

LEMMA 3.4. The geodesic between any pair of points
(p,q) € X x X is the curve defined by {x € X : x =
Ve (=P +Ad), A € [0,1]}.

Naturally, 1(.,.) defines the geodesics of second-type
Voronoi diagram. Geodesics for the first-type Voronoi
diagram turn out to describe the common weighted
averages of p and q used in many domains, such as the
arithmetic average for L2 as the Bregman divergence,
the geometric average for the I-divergence, and the
harmonic average for Itakura-Saito divergence (see [19]).

3.2 Symmetrized Bregman Voronoi diagrams
We can further define the Voronoi diagram of the sym-
metrized divergence Sp (third-type Bregman Voronoi
diagram) associated to the Bregman divergence Dp by
choosing the pseudo-distance function Sr as Sr(p,q) =
Sr(q,p) = DF(p,q);DF(qyp) (P=a.p’~d)  Djiver-
gence Sp can be handled as a Bregman divergence
in dimension 2d, where d = dimAX. Indeed, let
x = [x x/]T be the 2d-dimensional vector obtained by

stacking the coordinates of x on top of x’/, we have
Sr(p.a) = DF(p’q);DF(qp) = DF(p,q)JrfF*(p/,q’)

Dp({ g, ] , { ?1/ }), where F(X) = %[F F~] { z, } for
F* the conjugate function of F' (D : X x Vp&X — R).
We have Sp(p,q) = Dz(p,q). That is, the sym-
metrized Bregman divergence of d-variate function F
is a Bregman divergence F of dimension 2d. It fol-

lows that the third-type symmetrized Voronoi diagram

with Voronoi cells Vorg(p;) def {x € X | Sp(x,pi) <
Sr(x,pj) Vp; € S} is a Bregman Voronoi diagram:

Vorp(S) = vorp(S) = vorg.(S) = vorz (§) =
vor's (S).

4 Bregman Voronoi diagrams from polytopes

In this section, we consider Bregman Voronoi diagrams
of the first-type, except when explicitly mentioned.

4.1 The lifting map Let us embed the domain X
in XYT = X x R using an extra dimension denoted by
the Z-axis. The graph of F' is the convex hypersurface
of X*: F : 2z = F(x). For a point x € X,
let % denote its corresponding point in F C X7
obtained by the lifting transformation x = (x, F'(x)).
In addition, we write Proj, (x,z) = x for the vertical
projection (orthographic projection) of a point (x,z) €
X7 obtained by dropping the extra vector z-coordinate.

Let p € X and Hy be the hyperplane tangent to F
at point p of equation z = Hp(x) = (x — p,p’) + F(p),
and let Hg denote the halfspace above H consisting of
the points x = [x 2]7 € Xt such that z > Hp(x). A
simple but key observation is the following (see Fig. 1)

LEMMA 4.1. Dp(x,y) is measured by the vertical dis-
tance from X to Hy.

Proof. Dp(x,y) = F(x) = F(y) - (x—y,y') = F(x) -
Hy (x).

4.2 Bregman spheres and polarity We define the
(first-type) Bregman sphere of X’ of center ¢ and radius r
as o(c,r) = {x € X | Dp(x,c) = r} and the associated
ball B(c,r) = {x € X | Dp(x,c) < r}. The lifted image
¢ of a Bregman sphere ¢ is 6 = {(x, F(x)),x € 0}. We
associate to a Bregman sphere 0 = o(c,r) of X the
hyperplane H, : z = (x — ¢, ¢’} + F(c) + r, parallel to
H_. and at vertical distance r from H.. Observe that H,,
coincides with H, when r = 0, i.e. when ¢ is a point.

LEMMA 4.2. & is the intersection of F with H,. Con-
versely, the intersection of any hyperplane H with F
projects onto X as a Bregman sphere. More precisely,
if the equation of H is z = (x,a) + b, the sphere is
centered at V= *(a) and its radius is (V" *(a),a) —
F(VF_1(3>) +b.



Proof. The first part of the lemma is a direct conse-
quence of Lemma 4.1. For the second part, we consider
the hyperplane H' parallel to H and tangent to F. The
point where H is tangent to F is the point V" '(a).
Hence, the equation of H' is z = (x — Vp '(a),a) +
F(Vyr~'(a)). Using Lemma 4.1 again allows to con-
clude.

Let us restrict our attention to symmetric Bregman
divergences, i.e. Dp(x,y) = Dp(y,x) for any x and y.
It then follows from the two previous lemmata that all
the hyperplanes tangent to F at the points of & intersect
in a common point, namely ¢ = (¢, F(c) —r). We call
ot the pole of H, and H, the polar hyperplane of o+.
When F(x) = ||x||?, F is a paraboloid of revolution and
the correspondence between o™ and H, is the usual
polarity with respect to the paraboloid [9].

LEMMA 4.3. Polarity preserves incidences, i.e., for any
two spheres o1 and 02, o) € H,, < oot € H,,.

Proof.

O'TEHU2 = F(Cl)—’l“l:<C1—02,C/2>+F(C2)+7“2
< DF(C17C2) =7ry+1ry= DF(CQ,Cl)

+
& o0, € Hy

We mention another important property of Breg-
man spheres in the following lemma:

LEMMA 4.4. (PROOF IN [18]) Let o(c,r) be a Breg-
man sphere. Any geodesic passing through the center
c is Bregman orthogonal to o at exactly two antipodal
points.

4.3 Bregman Voronoi diagrams from polytopes
Let p; and p2 be two points. According to Lemma
4.1, the intersection of the two hyperplanes Hp, and
Hy, projects onto X along the Bregman bisector of
p1 and ps. Consider d + 1 points pg,...,pq. The
affine hull of these points is a hyperplane of X whose
vertical projection coincides with the (unique) Bregman
sphere passing through pg,...,pqs.- The corresponding
hyperplanes Hy,,,...,Hp, intersect in a single point
whose projection is the (unique) Bregman circumcenter
of the points. Consider now a set S of n points
P1,---,Pn and another point x. According to Lemma
4.1, the point of S which is closest to x (i.e. that
minimizes Dp(x,.)) is the point p; such that Hp,
intersects the vertical line passing through p above
all the other hyperplanes Hy,, j # i. The following
theorem follows.

THEOREM 4.1. The first-type Bregman Vorono: dia-
gram vorp(S) is obtained by projecting by Proj, the

faces of the (d + 1)-dimensional polytope H = ﬂiHFT)i of
X+ onto X.

From McMullen’s upperbound theorem [17] and
Chazelle’s optimal algorithm [10], we know that a poly-
tope of R? defined as the intersection of n halfspaces has

. d . .
complexity ©(nlz)) and can be computed in optimal-
time O(nlogn + nl2l) for any fixed dimension d. From
Theorem 4.1 and Lemma 3.2, we then deduce the fol-
lowing theorem.

THEOREM 4.2. The Bregman Voronoi diagrams of type
1 or 2 of a set of n d-dimensional points have com-
plexity @(’I’LL%J) and can be computed in optimal time
O(nlogn + nL%J). The third-type Bregman Voronoi
diagram for the symmetrized Bregman divergence of a
set of n d-dimensional points has complezity ©(n) and
can be computed in optimal time ©(n?) (for d > 2).

4.4 Bregman triangulations Let S be the lifted
image of S and let 7 be the lower convex hull of S, ie.
the collection of facets of the convex hull of S whose
supporting hyperplanes are below S. We say that S is
in general position if there is no subset of d 4+ 2 points
lying on a same Bregman sphere. Equivalently (see
Lemma 4.2), S is in general position if no subset of
d + 2 hyperplanes Hp, intersect in a single point.

In the rest of the paper, we assume that § is
in general position. Then, each vertex of H is the
intersection of exactly d+ 1 hyperplanes and the faces of
T are all simplices. Moreover the vertical projection of
7 is a triangulation BT(S) = Proj, (7) of S embedded
in R%. Indeed, since the restriction of Proj, to 7 is
bijective, BT(S) is a simplicial complex embedded in
X. Moreover, since F is convex, BT(S) covers the
convex hull of § and the set of vertices of 7 consists
of all the p;. Consequently, the set of vertices of
BT(S) is S. We call BT'(S) the Bregman triangulation
of S (see Fig. 5). When F(x) = |x||?>, BT(S)
is the well-known Delaunay triangulation dual to the
Euclidean Voronoi diagram. We have a similar result
for symmetric Bregman divergences.

LEMMA 4.5. For symmetric Bregman divergences, the
Bregman triangulation of S is dual to the Bregman
Voronoi diagram of S.

Proof. For symmetric Bregman divergences, the polar-
ity introduced in Section 4.2 provides a bijective map-
ping between the faces of H and the faces of 7. More
precisely, the mapping associates to a face f = Njc, Hp,
of H the dual face f* that is the convex hull of the p;,
¢ € v. This duality is an involution, i.e. f** = f, and
satisfies f C g = ¢g* C f*. Hence, BT(S) is dual to the
Bregman Voronoi diagram of S.



Figure 5: A 2D Bregman Voronoi diagram and its dual
regular triangulation for the exponential divergence.

We say that a Bregman sphere o is empty if the
open ball bounded by o does not contain any point of
S. The following theorem extends a similar well-known
property for Delaunay triangulations whose proof (see,
for example, [7]) can be extended in a straightforward
way to Bregman triangulations.

THEOREM 4.3. The Bregman sphere circumscribing
any simplex of BT(S) is empty. BT(S) is the only tri-
angulation of S with this property when S is in general
position.

Several other properties of Delaunay triangulations
extend to Bregman triangulations. We list some of
them.

THEOREM 4.4. (EMPTY BALL) Let v be a subset of at
most d+ 1 indices in {1,...,n}. The convex hull of the
associated points p;, i € v, is a simplex of the Bregman
triangulation of S iff there exists an empty Bregman
sphere o passing through the p;, i € v.

The next property exhibits a local characterization
of Bregman triangulations. Let T'(S) be a triangulation
of §. We say that a pair of adjacent facets f1 = (f,p1)
and fo = (f, p2) of T'(S) is regular iff p; does not belong
to the open Bregman ball circumscribing f; and ps does
not belong to the open Bregman ball circumscribing
f1 (the two statements are equivalent for symmetric
Bregman divergences).

THEOREM 4.5. (LOCALITY) Any triangulation of a
given set of points S (in general position) whose pairs
of facets are all regular is the Bregman triangulation of

S.

Let S be a given set of points, BT'(S) its Bregman
triangulation, and 7 (S) the set of all the triangulations

of §. We define the Bregman radius of a d-simplex 7
as the radius noted r(7) of the smallest Bregman ball
containing 7. The following result is an extension of a
result due to Rajan for Delaunay triangulations [22].

THEOREM 4.6. (OPTIMALITY) We have BT(S) =
minper(s) Max 7 7(7).

The proof mimics Rajan’s proof [22] for the case of
Delaunay triangulations.
5 Bregman Voronoi from Power
diagrams

diagrams

5.1 Power diagrams and regular triangulations
The power distance of a point x to a ball B = Ball(p, r)
is defined as ||p — x|[* — r?. Given n balls B; =
Ball(p;,r;), ¢ = 1,...,n, the power diagram of n
balls is defined as the minimization diagram of the
corresponding n functions ||p; — x||* — r?. The power
bisector of any two balls Ball(p,,) and Ball(q,rq) is
a hyperplane of equation 2(x,q — p) + ||p||* — ||al|* +
rg — rfj = 0. Thus power diagrams are affine diagrams.
Moreover, as shown by Aurenhammer [2, 7], any affine
diagram is identical to the power diagram of a set of
balls.

It is well known that a power diagram of a finite
set of balls of R? has a dual triangulation known as the
reqular triangulation. This triangulation is embedded in
R? with its vertices at the centers of the hyperspheres.

In general, some balls may have an empty cell in
their power diagram. Equivalently, some sites may not
appear as vertices of the dual regular triangulation.

5.2 Bregman Voronoi diagrams from power di-
agrams Since Bregman Voronoi diagrams of the first
type are affine diagrams, Bregman Voronoi diagrams
are power diagrams [2, 7]. Observe however that Breg-
man Voronoi diagrams are special cases of power dia-
grams since, differently from power diagrams, any cell
in a Bregman Voronoi diagram contains its generator
and therefore is non empty. See Section 6.1 for a fur-
ther discussion on this point. The following theorem
makes precise this correspondence.

THEOREM 5.1. The first-type Bregman Voronoi dia-
gram of n sites of X is identical to the power di-
agram of the n Fuclidean hyperspheres of equations
(x—pl,x—p}) = (p;,p;) + 2(F(pi)) — (Pi,p})) for
1=1,...,n.

Proof. Consider wlog. Dp(x,p;) < Dp(x,p;). That is,
—F(pi)—(x = pi,p;) < —F(p;)—(x — pj, pj). It comes
that (x,x) — 2(x,p}) — 2F(p;) + 2(p:;, ) < (x,Xx) —
2(x, p;> - 2F(pj) + 2<pj7p;'>' Thus, (x — p;,X - p;> -



r?2 < (x—pj,x—pj)) — r]27 where r? = (p},p}) +
2(F(pi) — (pi,p})) and 7§ = (p},p}) + 2(F(p;) —
(pj,Pj)). The last inequality means that the power of
x with respect to the Euclidean (possibly imaginary)
sphere S(p},7;) is no more than the power of x with

respect to the Euclidean (possibly imaginary) sphere
S(p;, ’I"j).

Note that for F(x) = 1(x,x) (half the squared Eu-

clidean distance Dp) that yields the ordinary Voronoi
diagram as well, we have (x,x’) — F(x) = 3(x,x) and

2
x’' = x, and therefore get 72 = 72 = 0 as expected.

2=
5.3 Bregman geodesic triangulations. The regu-
lar triangulation dual to the power diagram above is a
triangulation of the points p. The image of this trian-
gulation by V;l is a curved triangulation whose vertices
are the p;. The edges of this curved triangulation are
geodesic arcs joining two sites by Lemma 3.4. The re-
duction to power diagrams provides an alternative con-
venient solution for computing Bregman Voronoi dia-
grams as many available software libraries handle power
diagrams (e.g., QHULL, CGAL or LEDA). Note how-
ever that computing the reciprocal gradient for com-
puting the curved Bregman Voronoi diagrams is a non-
trivial operation that can be quite challenging for some
convex functions F.

6 Generalized Bregman divergences and their
Voronoi diagrams

6.1 Weighted Bregman Voronoi diagrams We
associate to each site p; a weight w, € R. We
define the weighted divergence between two weighted
points as WDr(pi, p;) e Dr(pi,pj) + w; —wj. We
can define bisectors and weighted Bregman Voronoi
diagram in very much the same way as for non weighted
divergences: vorg(p;, w;) et {x € X | Dp(x,p;i)+w; <
Dp(x,p;) + w; Vp; € S}. Observe that the bisectors
of the 1st-type diagrams are still hyperplanes and that
the diagram can be obtained as the projection of a
H-polytope or as the power diagram of a finite set
of balls. The only difference wrt the construction of
Section 4 is the fact that now the hyperplanes Hy, are
no longer tangent to F: they are indeed shifted by a z-
displacement of length w;. As a consequence, the cells
of some sites may be empty and the class of weighted
Bregman Voronoi diagrams is identical to the class of
affine or power diagrams.

THEOREM 6.1. The weighted Bregman Voronoi dia-
grams of type 1 or 2 of a set of n d-dimensional points
have complexity @(nL%J) and can be computed in op-
timal time ©(nlogn + nL%J),

We define the k-order Bregman Voronoi diagram of
n punctual sites of X' as the subdivision of X into cells
such that each cell is associated to a subset of k sites and
consists of the points of X whose divergence to any site
in the subset is less than the divergence to the other
sites. Similarly to the case of higher-order Euclidean
Voronoi diagrams, we have:

THEOREM 6.2. The k-order Bregman Voronoi diagram
of n d-dimensional points is a weighted Bregman
Voronoi diagram.

Proof. Let Py, P,,... denote the subsets of k points of
P and write Di(x) = £ Y .cp Dr(x,p;). That is
Di(x) = F(X)_% ZjePi F(pj)‘i‘% ZjGPi (x - pj,p9>-
Thus, D;(x) = F(x) — F(¢;) — (x—c¢;,¢}) + w; =
W Dp(x,c;), where ¢; = Vet (% ZjePi p;) and the
weight associated to ¢; is w; = F(c;) — (ci,c)) —
% Z_jePi (F(pj) =+ <pjap;'>)'

Hence, P; is the set of the k nearest neighbors of x
iff Vj, D;(x) < Dj(x), or equivalently, iff x belongs to
the cell of ¢; in the weighted Bregman Voronoi diagram
of the c;.

6.2 Higher-jet divergence Let us now turn on to
the notion of higher-jet divergences. Let D%k) be a
k-jet divergence obtained from the tail of a Taylor
expansion of a convex function F: Dgf) (x,y) = F(x) —
P(y) - yb, Zrvey)

Lai=1 K
Zle DF(YZM
Let us write for short Dy = Dg) the standard Bregman
divergence (i.e. k=1) and Dg)(x, y)=F(x)-F(y)—
(x=y)Ty' = (x=y) V58 (x—y) = DY (x,y) = (x -
¥)'Qr(y) (x—y) where Qr(y) = 3 V#*(y) denote half
of the Hessian symmetric matrix of F' defined over R?.

The second-jet divergence not being symmetric, we
define the bisector of two points p and q in two different
ways H(p,q) = {x € X | Qr(x,p) = Qr(x,q)} (first-
type) and H'(p,q) = {x € X [ Qr(p,x) = Qr(q,x)}
(second-type). Plainly, a bisector of the first-type is a
quadratic hypersurface of R% and the associated second-
jet Voronoi diagram of the first type is therefore an
anisotropic Voronoi diagram [6].

Let ¢;5,i=1,---,d,7=1,---,d be the elements of
Qr(y) and @ (y) = (¢ij,i = 1,---,d,i < j) the vector
of the elements of the upper triangle of Qr(y). Let x! =
(x1,-++,2q), Xt = (25%30196],2 =1,---,d,i < j) and
X! = (x,x%)" where §;; is 1 if i = j and 0 otherwise [6].
Observe that X € RP where D = @. We have
(x—y)' Qr(y) (x — y) = 2(% — ¥)ar(y) and therefore
D (x.y) = F(x)=F(y)~(x=y)'y' ~2(x~¥)'ar(y) =

(multi-index notation with

the truncated Taylor expansion).



F(x) — F(y) — (X—Y)t( 2qz’(y) ) — PDp(X,Y).

The expression of PDp(X,Y) is similar to (though
different from) the definition of a Bregman divergence.
In particular, first-type bisectors are linear in X and
therefore hyperplanes of RP. Let ¢ be the mapping:
x € R?+— X € RP. The above discussion together with
section 3 leads to the following theorem (see also [6]).

THEOREM 6.3. The first-type second-jet Voronoi dia-
gram of n sites of R can be obtained as the pull-back by

. . D _d(d+3)
¢ of a power diagram of n spheres in R, D = ===
By the convexr duality, the same result holds for the
second-type second-jet Voronoi diagram.

The combinatorial complexity of those diagrams is
O(n4*¢) by a result of Sharir [25] but smaller for some
special cases of Qr. We can distinguish the isotropic
case : Qp(y) = o(y)I where o(y) € R and I is the
d x d identity matrix. In this case, D = d 4+ 1 and the
second-jet Voronoi diagram is a Mdébius diagram whose
complexity is ©(nl*2*]) [5]. When Qp is a diagonal
matrix, D = 2d and the combinatorial complexity of the
diagram is the same as the combinatorial complexity of
a power diagram in R??, specifically ©(n?). This bound
is tight.

7 Applications
7.1 Union of Bregman balls

THEOREM 7.1. The union of n Bregman balls of X
has complexity @(nL%J) and can be computed in time
O©(nlogn + nl%] ).

Proof. To each ball, we can associate its bounding
Bregman hypersphere o; which, by Lemma 4.2, is the
projection by Proj, of the intersection of F with a
hyperplane H,,. The points of F that are below H,,
projects onto points that are inside the ball bounded by
0;. Hence the union of the balls is the projection by
Proj, of the complement of F N (ﬂ?le;i).

7.2 Centroidal Bregman Voronoi diagrams We
define the Bregman centroid of a domain D C
X as the point ¢* € X such that c¢* =
argmingep [ .p Dr(x,¢)dz.  The following lemma
states that the Bregman centroid of D is uniquely de-
fined and does not depend on F.

LEMMA 7.1. The Bregman centroid of D coincides with
the (Ls) centroid (center of mass) of D.

Proof. 2 [ _p Dr(x,c)dz = V [ (F(x) — F(c) —
(x—c,Vp())dr = —[ p Vii(c)(x — ¢)dz =
xdz

_ 2 . * IXL
\v (c)(fxeD xdz cfxeD dz). Hence, c it

Note that this result extends the discrete case (fi-
nite point sets) studied in [4]. Computing a centroidal
Bregman Voronoi diagram of k points can be done by
means of Lloyd’s kmeans algorithm [16]. We select an
initial set of k points. Then, we iteratively compute
a Bregman Voronoi diagram and move the sites to the
Bregman centroids of the corresponding cells in the di-
agram. The fixed point of this algorithm is a centroidal
Bregman Voronoi diagram by standard arguments [11].
The output of the algorithm is a local minimizer of
F((Pi,Vi)si = 1,..k) = Y0y [yey, Dr(x,pi)de
where {p;}¥_, denotes any set of k points of X and
{Vi}k_, denotes any tesselation of X' into k regions.

7.3 Sampling The kmeans algorithm [16] intends to
find a best set of k points for a given k. Differently,
we may want to sample a compact domain D up to a
given precision while minimizing the number of samples.
More precisely, let us define the error associated to a
sample P as error(P) = maxxep ming,ep Dp(X,p;).
A finite set of points P of D is an e-sample of D iff
error(P) < e. For simplicity, we assume in the rest of
the section that D is a convex polytope. Extending the
results to more general domains is possible.

Let P C D, BVD(P) be the Bregman Voronoi
diagram of P and BV Dp(P) be its restriction to D.
Write V' for the set of vertices of the restriction of
the 1-skeleton of BV Dp(P). V consists of vertices of
BV D(P) and intersection points between the edges of
BV D(P) and the boundary of D. The following lemma
states that error(P) can be computed by examining only
a finite number of points, namely the points of V.

LEMMA 7.2. error(P) = maxyey ming,cp Dp(x, p;).

Proof. Let x € D, px the point of P closest to x and
Vi the associated cell of BV Dp(P) (which contains x).
V% is a bounded polytope whose vertices belongs to V.
Let w be the vertex of Vi most distant from py. We
have Dp(x,px) < Dp(w,px). This is a consequence
of the convexity of F' and of the fact that Dp(x,p) is
measured by the vertical distance between H, and Hy
(Lemma 4.1).

The sampling problem is to find an e-sample of minimal
size. A simple solution to this problem is the following
greedy algorithm originally proposed by Ruppert in the
context of mesh generation [23]. See also [12]. We
initialize the sample set Py with d points of D lying
at distance greater than ¢ from one another. Then, at
each step, the algorithm looks for the point v; of D that
is the furthest (for the considered Bregman divergence)
from the current set of samples P;. By Lemma 7.2, this
step reduces to looking at the vertices of BV Dp(F;). If



Dp(x,v;) < e, the algorithm stops. Otherwise, we take
v; as a new sample point, i.e. p;41 = v;, we update the
set of sample points, i.e. P11 = P;U{pi+1}, and insert
Pi+1 in the Bregman Voronoi diagram of the sample
points. Upon termination, the set of sample points P;
satisfies the hypothesis of Lemma 7.2 and therefore P,
is an e-sample of D.

To prove that the algorithm terminates, we need
the following lemma. Given a Bregman ball B(c, ), we
define the biggest Euclidean ball EB(c,r’) contained
in B(c,r) and the smallest Euclidean ball EB(c,r"”)
containing B(c, r).

LEMMA 7.3. (PROOF IN [18]) Let F be a strictly con-
vex function of class C?, there are constants ' and ~"
such that "% > ~'r and r'"? < ~"'r.

If we denote by B(r) a Bregman ball of radius r, we
thus have +'mr? < area(B(r)) < v”nr?. When F is of
class C? and D is compact, a packing argument shows
that the algorithm cannot insert infinitely many points.
Moreover, the size of the sample output by the algo-
rithm is asymptotically optimal, up to a multiplicative
constant. This is formally stated in the next lemma.
Write D¢ = {x|| Jy € D, Dr(x,y) < e}

LEMMA 7.4. (PROOF IN [18]) The algorithm termi-
nates. If P, denote the final set of sample points, we
< ‘Pt| < 4area(D§%)

’y’71'62

area(D
,Y//ﬂ.EZ

have

In the technical report [18], we further give related
results on the geometry of Bregman divergences and its
applications.
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