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Abstract

A set of objects is k-pierceable if there exists a set of k points such that each object
is pierced by (contains) at least one of these points. Finding the smallest integer k such
that a set is k-pierceable is NP-complete. In this paper, we present efficient algorithms
for finding a piercing set (i.e., a set of k points as above) for several classes of convex
objects and small values of k. In some of the cases, our algorithms imply known as well
as new Helly-type theorems, thus adding to previous results of Danzer and Griinbaum
who studied the case of axis-parallel boxes. The problems studied here are related to
the collection of optimization problems in which one seeks the smallest scaling factor
of a centrally symmetric convex object K, so that a set of points can be covered by k
congruent homothets of K.

1 Introduction

Let S be a set of n d-dimensional convex objects. S is k-pierceable if there exists a set P of
k points in £ such that each object in S is pierced by (contains) at least one point in P.
Perhaps one of the most famous theorems in convex geometry is Helly’s theorem [DGK63,
GW093| that states that S is 1-pierceable (i.e., has a non-empty intersection) if and only
if every subset of S of cardinality d + 1 is 1-pierceable. The Helly-number h = h(C, P)
associated with a class of objects C and a property P is the smallest integer (if such exists)
so that for any set S C C we have: if every subset of S of cardinality h has property P,
then § also has property P. If such an integer does not exist, we set h by convention to oo
(infinity). Let [[* denote the k-pierceability property and C% be the class of d-dimensional
convex objects. Then Helly’s theorem states that h(C% [[') = d + 1. There are many
Helly-type theorems in convex geometry (see [GW93] for an up-to-date survey).

Danzer and Griinbaum [DG82| studied the case of d-dimensional (axis-parallel) boxes
B¢ and obtained Helly-type theorems whenever they exist. They prove in particular that
h(B* TT*) = oo, for d,k > 3. They conclude their paper with the following conjecture:
h(T4(K),TI?) < oo if and only if K is a convex polytope, where T¢(K) is the class of
all translates of .  This conjecture has been refuted very recently by Katchalski and
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Nashtir [KN96], who proved that h(T2(K),[]?) = oo, for a centrally symmetric convex
hexagon K.

The problems studied in this paper are related to a collection of optimization problems.
Let P be a set of n points in £% and K a centrally symmetric convex object. Let o be
the center point of K and let K, be a homothet of K with scaling factor A. K defines a
semi-distance function as follows: For two points a and b, dk (a,b) = A, if K is the smallest
homothet of K that contains b when it is centered at a.

In these optimization problems we seek the smallest real A such that P can be covered
by k translates of K. Note that these problems are always solvable by setting A to an
arbitrary large real. The decision problem associated with these optimization problems is
the following. Given a value A determine whether P can be covered by k translates of
K,, i.e., try to find k appropriate loci for the (center points of the) k copies of K). A
point p € P lies in a translate of K centered at o iff dx(o,p) < A, and, since dg(-,) is
a symmetric function, iff dx(p,0) < A. Let Pk, be the set that is obtained from P by
replacing each point p € P with the translate of K, that is centered at p. Then, P can be
covered by k translates of K iff Pg, is k-pierceable. Generally, once the decision problem
is solved efficiently, we link it with the parametric searching technique of Megiddo [Meg83],
in order to obtain an efficient solution for the original optimization problem. For example,
consider the 2-center problem. In this problem we wish to cover P by two congruent disks of
minimum radius. The corresponding decision problem is: Given a fixed value for the radius,
say, 1, determine whether P can be covered by two disks of radius 1. This is equivalent to
the following problem. Let Pk be the set of unit disks centered at the points of P, determine
whether Pk is 2-pierceable. Recently, Sharir [Sha96] has presented a nearly linear algorithm
for the 2-center decision problem, which immediately implies a nearly linear solution to the
equivalent piercing problem. It is well known that if K is a centrally symmetric strictly
convex object in the plane (e.g., a disk), then h(T2(K), [?) = oo (see [HD60] for an elegant
proof). This immediately implies that the 2-center decision problem is not an LP-type
problem, since every LP-type problem implies a Helly-type theorem [Ame94] (see discussion
below).

Amenta [Ame94] studied the relationships between LP-type problems and Helly-type
theorems. (See [MSW92] for the definition of LP-type problems and an efficient linear-
time randomized algorithm.) She showed that every LP-type problem has a corresponding
Helly-type theorem but that the converse is not necessarily true. Nevertheless, she gave two
paradigms for obtaining a LP-type problem from a Helly-type theorem. These paradigms
fit the Helly-type theorems that are derived in this paper. We thus can obtain a randomized
linear-time algorithm for the corresponding piercing problems (which can be derandomized,
in turn, using the algorithm of Chazelle and Matousek [CM93]). However, these algorithms
are much more complicated than ours. Moreover, our algorithms consist of the proofs for
the Helly-type theorems that we obtain.

Table 1 summarizes our results. We also show that h(C, HQ) = 00, where C is the class
of 4-sided convex polygons. All these results are a significant improvement over the naive
solution that consists of computing the arrangement which is of size O(n?), and checking,
for each subset of k cells, whether the underlying set of objects is pierced by this subset.



Objects k Time
homothetic triangles 2 | O(n) (Helly-type)
4, 5-oriented polygons 2 O(nlogn)
d-dim. c-oriented polytopes | 2 O(nmin{L%J’d} logn)
(d + 1)-oriented simplices | 2 O(n[%] logn)
d-dim. boxes 2 | O(n) (Helly-type)
homothetic triangles 3 O(nlogn)

Table 1: Summary of the results presented in this paper.

Thus, the naive method requires O(n%*1!) time (assuming k is a constant). The naive
solution can be slightly improved. Each cell of the arrangement is labelled with the subset
of objects containing it. A cell is mazimal if its corresponding subset is not contained in the
subset of another cell. Clearly, if there exists a solution, then there also exists a solution
that consists of at most k£ points drawn from maximal cells. Note, however, that the number
of maximal cells can be as large as Q(n?). (Consider the following set of n convex objects:
For each direction x;, i = 1,...,d, we take the n/d objects [0,n/d]* N (j < x; < j + 1),
j=0,...,n/d — 1. Clearly, each d-cell of the arrangement of this set is maximal.) We
can refine the naive algorithm as follows. For each subset of k£ — 1 cells, check whether the
remaining set of objects that are not pierced by these cells has a non-empty intersection
(this is an LP-type problem). Thus, we obtain an O(n¥*=1+1) expected time algorithm.

Since the problem of finding the minimum integer k£ so that a set of objects S is k-
pierceable was shown to be NP-complete [Kar72, FPT81|, many authors have focused on
the problem of approximating k. There exist some polynomial-time algorithms for the
latter problem with bounded error ratio [Chv79, Hoc82]. Bellare et al. [BGLR93] show
that no polynomial-time algorithm can approximate the optimal solution within a factor
of (3 — €)1og|S|, unless NP C DTIME[n'°8'°¢"], where € > 0. This problem (in its
non-geometric formulation) is called in the literature the set cover problem.

In this paper, we essentially study a larger class of objects (in comparison with Danzer
and Griinbaum’s paper), namely, the class of c-oriented convex polytopes, which contains
the special case of all homothets of some c-facet polytope. An object O is c-oriented if it
can be defined as the intersection of at most ¢ translates of members of a given set of ¢
halfspaces. For example, d-dimensional (axis-parallel) boxes are 2d-oriented.

This paper is organized as follows. We first demonstrate our general method (Sec-
tion 2) on the case of boxes and for k¥ = 2, and derive a Helly-type theorem of Danzer
and Griinbaum. We then describe this method (Section 3) for the case of c-oriented con-
vex polytopes. In Section 4, several special cases are considered in which we are able to
obtain more efficient solutions than those that are implied by the general method. In this
section we obtain a new Helly-type theorem (this theorem with the exact Helly-number was



also discovered independently by Katchalski and Nashtir [KN96]). Finally, we conclude in
Section 5.

2 Piercing Sets of Boxes with 2 Points

Let h(d,k) be the Helly-number for d-dimensional (axis-parallel) boxes and k points, that
is, h(d, k) is the smallest integer (if such exists) such that, if every subset of cardinality
h(d, k) of a set B of d-boxes is k-pierceable, then B is k-pierceable. If such an integer does
not exist, we set h(d,k) = co. Danzer and Griinbaum [DG82] have proven the following
theorem, which we present as a table:

Theorem 1 (Danzer and Griinbaum)

h(d,k) | k=1 k=2 k=3|k>4
=1 2 3 4 kE+1
= 2 5 16 00

3d of d 1s odd

d23 2 {3d—1 if d is even > >

Their proof for the case of d-dimensional boxes, d > 2, and two points is constructive
and induces a simple algorithm. We briefly describe this algorithm in order to compare it
subsequently with ours. If there exists a hyperplane x; = ¢ that meets all the boxes of B,
then B is 2-pierceable if and only if the (d — 1)-dimensional set of boxes B’ = {B N (x; =
c)|B € B} is 2-pierceable. Hence, we may assume w.l.o.g. that the projection P; of B onto
the x; axis yields at least one pair of disjoint segments, for i = 1,...,d. Denote by a; (resp.
b;) the lower bound (resp. upper bound) of the right (resp. left) endpoints of the segments
of P;. W.lo.g., assume that a; = 0 and b; = 1, for i = 1,...d, and put v = (1,1,...,1).
Then, B is 2-pierceable if and only if there are two opposite points p € {0, 1}d and v — p
that pierce B. This gives us an O(2%n) time algorithm. Note that if B is not 2-pierceable,
then we can obtain a counterexample of size O(2%) from which we can select a subset of
size 3d (for odd d) or 3d — 1 (for even d) in O(1) time, for fixed dimension d.

We describe in this section a more general and algorithmic approach to the k-piercing
problem, and demonstrate it for the case of d-boxes with 2 points. (The algorithm above
of Danzer and Griinbaum is very specialized and it cannot be generalized to handle other
classes of objects.) Our approach does not yield the exact Helly-numbers but only upper
bounds. In the subsequent sections, we will apply our approach to sets of more complex ob-
jects to obtain new results. We begin with the case of axis-parallel rectangles (2-dimensional
boxes) in order to focus on the method.



2.1 2-dimensional boxes (rectangles)

Let B = {Bjy, ..., B, } be aset of n 2-boxes. We wish to find a piercing set for B which consists
of 2 points, if such a set exists. In other words, we wish to solve the 2-piercing problem
for B. We first check whether B is 1-pierceable by computing the region N}_, By (which is
of course also a box) incrementally. If at some stage, j, the current region becomes empty,
then obviously B is not 1-pierceable. Denote the box ﬂfc;llBk by R. Since RN B; = (), there
exists either a vertical line or a horizontal line that separates between R and B;. Assume
for example that the separating line is vertical and that Bj; lies to the right of this line,
then the box B; of B whose right edge contains the right edge of R and B; are disjoint. We
have thus found in linear time two disjoint boxes B; and B; in B (and have proven the well
known result: h(2,1) = 2). Clearly, if B is 2-pierceable, then one of the two piercing points
must lie in B; and the other in B;.

Consider the following partition of B into four subsets:

e By ={B€BIBNB;#0and BN B; =0}
e By={B€B|BNB;=0and BN B;# 0}
e By={B € B|BNB;=0and BNB; =0}
e By={BeB|BNB; #0and BN B; # 0}

Clearly, if Bg # @ then B is not 2-pierceable, and we have a counterexample of size
3. Assume, therefore, that B3 = (). Also, all boxes in B; must be pierced in B;, and all
boxes in By must be pierced in B;. Put Bj = NB; and Bj = NB,. If one of these boxes is
empty, then B is not 2-pierceable (and we have a counterexample of size 3), and if both are
non-empty and B4 = () then we are done.

Now, choose the box B € B4 with the highest bottom edge b. B must be pierced either
in Bj or in Bj. If B is pierced in Bj, 1 < k < 2, then clearly the best place to put a
piercing point inside By is at the intersection point formed by b and the vertical edge of
By, that is closer to the separating vertical line. We first try to pierce B in B] (if possible).
We then check whether the set of all boxes in B that are still not pierced is 1-pierceable. If
this does not yield a solution (i.e., this set is not 1-pierceable and we obtain two disjoint
boxes as above), we try the analogue case. If this too does not yield a solution then we
may conclude that B is not 2-pierceable, and we have obtained a counterexample of size at
most 13. (The four boxes defining Bj, plus the four boxes defining Bj, plus B, plus the two
disjoint boxes that are obtained when piercing B in Bj, and the two disjoint boxes that are
obtained when piercing B in Bj.)

We have described a linear-time algorithm for the 2-piercing problem for a set of planar
boxes. Our algorithm immediately implies a Helly-type theorem, since it always provides a
counterexample of size at most 13 whenever the input set is not 2-pierceable. (A more careful
inspection shows that the maximum size of a counterexample is only 5, see Theorem 1.)



2.2 d-dimensional boxes

In this section we describe our algorithm for the 2-piercing problem for a set B of n d-
dimensional boxes. This algorithm will imply that h(d,2) is finite. As mentioned, the exact
value for h(d,2) was given by Danzer and Griinbaum. However, our emphasis here is on
the general method which will lead to new results in the subsequent sections.

As before, we first check in linear time whether B is 1-pierceable, and obtain two disjoint
boxes B; and Bj, if it is not. A box B is a special type of polytope; it is defined by 2d
halfspaces of the form x; > a; or z; < b;, for 1 <4 < d and real values a; and b;. We will
distinguish between the ‘orientations’ of opposite facets of B; thus B has 2d facets of 2d
different orientations.

Our algorithm consists of two stages. In the first stage we obtain a collection of at most
224 pairs of disjoint regions (boxes) C = {(E1, F1),. .., (Em, Fy,)} with the following two
properties: (i) If there exists a solution, then there exists a pair (Ey, Fi) € C and points
p € Ey and ¢ € Fy such that {p,q} is a piercing set for B. (ii) Let .A(B) denote the
arrangement of B restricted to the (open) box B. Then the arrangements A(E}) and A(Fk)
do not have a common facet orientation. That is, if A(E}) has a facet of some orientation o,
then A(F})) does not have a facet of this orientation (and vice versa). In the second stage,
for each of the pairs (E, F') in C, we search for a solution in which one of the points lies in
FE and the other lies in F.

We begin the first stage with the disjoint regions B; and B;. If there exists a third
box in B which is disjoint from both B; and Bj;, then clearly B is not 2-pierceable, and we
are done. Let o denote a facet orientation that appears in both the clipped arrangements
A(B;) and A(B;). We show below how to eliminate o from one of them. More precisely, we
will replace the pair (B;, B;) by two pairs of regions such that the first region in both these
pairs is contained in B;, the second region is contained in Bj, and for each of these pairs the
orientation o appears in only one of the corresponding clipped arrangements, and property
(i) above holds for the collection consisting of these two pairs. Among all the facets of
orientation o of the clipped arrangements A(B;) and A(Bj), choose the ‘topmost’ facet f
(i.e., if the halfspaces corresponding to these facets are of the form z; > a;, choose the facet
with largest a;, and if they are of the form x; < b;, choose the facet with smallest b;). Let
B be the box that is partially defined by f. In any solution, B is either pierced in B; or
in B;. If it is pierced in By, 1 < k < 2, then we can replace the region By, by the smaller
region By N B for which the orientation o does not appear in its corresponding clipped
arrangement. We thus replace the pair (B;, B;) by the (at most) two pairs (B; N B, Bj)
and (B;, Bj N B). Note that it is necessary to choose a facet orientation o that appears in
both clipped arrangements. We apply this procedure now to the (at most) two pairs that
were obtained (thus obtaining (at most) four new pairs) and so on, until none of the current
pairs can be further processed. At the end of this tree process we are left with a collection
C of at most 22¢ pairs of regions so that properties (i) and (ii) hold.

In the second stage, for each of the pairs (E, F') € C, we search for a solution in which
one of the points lies in F' and the second in F. Consider a pair (E,F) € C. Our goal is
to shrink the two regions F and F without loosing all the solutions (if such exist), until



eventually one of them becomes a cell of the arrangement of 3. We then can place a point
anywhere inside this cell, and check whether the set of boxes in B that are not pierced by
this point is 1-pierceable.

Assume w.l.o.g. that F and F are vertically separable. That is, there exists a vertical
hyperplane h such that E lies on one of its sides and F' lies on the other. As in the planar
case, we partition the set B into the four subsets By, Bs, Bs, By (with respect to E and F),
and compute the regions B] and B). The problematic boxes are those boxes in By that
still intersect both B and B, since such boxes can be pierced both in Bf and in Bj. The
hyperplane h intersects all but the two vertical facets of these boxes. Consider a pair of
opposite facet orientations o and @. By property (ii) above, o (0) appears in at most one of
the two corresponding clipped arrangements A(B]) and A(Bj). If o and o do not appear
in the same clipped arrangement, then we can eliminate both of them easily (see Figure 1
— Case 1). Assume, for example, that o appears in A(B}]). We can replace the region Bj
(resp. Bj) by the region B} N5 (resp. By N s), where 5 (resp. s) is the topmost halfspace
(in the sense explained above) corresponding to a facet of orientation o (resp. o) in A(B])
(vesp. A(B$)), without loosing all solutions, since all the closing facets of orientation o
(resp. 0) of boxes in By that intersect Bf (resp. Bj) are necessarily ‘below’ the closing facet
of B (resp. B}) of this orientation. So now assume that o and 0 appear in the same clipped
arrangement, say, A(B]). Let s (resp. 5) be the topmost halfspace corresponding to a facet
of orientation o (resp. 0) in A(B]). If s NS # (), then again we can replace the region Bj
by the region Bi N (sN3s) without loosing any solution (see Figure 1 — Case 2). If, however,
sNs = (), then, if B} is disjoint from both these halfspaces, then clearly there is no solution
(see Figure 1 — Case 3), and, otherwise (B} is contained in one of these halfspaces), one
of the two boxes that are partially defined by these halfspaces, say the one that is defined
by 3, must be pierced in Bj since it does not intersect B, so we replace Bj by the region
B{ N3 (see Figure 1 — Case 4) .

We now consider another pair of opposite orientations, and so on, until one of our two
regions reduces to a cell of the arrangement of B, and we can conclude as described above.
To summarize, we have presented a linear-time algorithm for the 2-piercing problem for
the set B. Moreover, we have shown that h(d,2) is finite, since our algorithm will always
provide a counterexample of bounded constant size.

Remark 1: The above tree process can be applied to any number of disjoint regions to
remove an orientation that appears in all the corresponding clipped arrangements.

Remark 2: It is easy to transform the linear algorithm that is induced by the proof of
Danzer and Griinbaum (described at the beginning of this section) into a linear algorithm
for the 3-piercing problem for rectangles in the plane. Combining the approach of this algo-
rithm with some dynamic data structures, Sharir and Welzl [SW96] have recently obtained
O(n polylog(n)) solutions to the 4- and 5-piercing problems for rectangles in the plane.
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Figure 1: Considering a pair of opposite orientations o and o in (Bf, B).



3 Piercing Sets of c-Oriented Polytopes with 2 Points

Let H be a set of ¢ halfspaces in £%, for some constant c. In this section, we consider
the class Cy of c-oriented convex polytopes above H (that is, every polytope in Cy can be
defined as the intersection of at most ¢ translates of halfspaces in H). Let S be a subset
of Cy of size n. The main result of this section is a general algorithm for the 2-piercing
problem for S, whose time complexity is roughly O(n™{L51:4}). Thus, whenever 5] <d
(e.g., when ¢ = d+ 1 and S is a set of simplices), this algorithm is much faster than the

naive algorithm described in the introduction.

Piercing & with a single point. As the intersection of any subset of S is either empty
or a member of Cy (and thus defined by at most ¢ objects of S), we can compute the
intersection R = NS in linear time. More precisely, we process the objects of S one by one,
spending O(c) time per object. If R # (), then S is 1-pierceable, and we may pick any point
in R. If R = (), then we obtain a subset S’ of cardinality at most ¢ + 1 such that NS’ = 0.
This implies that h(Cy, [[') < min{c+ 1,d+ 1}. However, the case ¢ < d is not interesting,
since, in this case, either NS # @ or it is possible to decrease the dimension. We can obtain
in constant time a minimal subset S” C &' of size at most d + 1 such that NS" = (.

Piercing S with two points. We distinguish between two cases: |§| < d and |§] > d.
For the former case we present below a roughly O(nl3!) time algorithm, while for the latter
case we basically apply the naive algorithm described in the introduction (exploiting the
fact that the underlying objects are c-oriented), and obtain a roughly O(n?) time algorithm.
We begin with the case [§] < d. We first check whether R = NS is empty. If R # () then
S is 1-pierceable. Otherwise, we obtain a subset S”, as above, of size at most d + 1 so that
NS"” = (. We now consider all the (constant number of) ways to partition 8" into two
subsets S§; and Sy such that X = NS} # 0 and Y = NSy # (. Clearly, the regions X and
Y are disjoint. For each such partition (producing the pair of disjoint regions X and Y')
we proceed as follows. Apply the ‘tree process’ of stage 1 of the algorithm of the previous
section for the case of d-dimensional boxes. At the end of this stage, we are left with a
collection of at most 2¢ pairs of regions for which properties (i) and (ii) of the previous
section hold. Consider each of these pairs (E, F') separately. As before let A(R) denote
the arrangement of S within the region R, then property (ii) assures that the arrangements
A(E) and A(F) do not have facets of the same orientation, and therefore at least one of
these arrangements, say, A(E), does not have more than |5| facet orientations. Thus the
arrangement A(E) has only faces of dimension & for d — [§| < k < d, and its combinatorial
complexity is therefore only O(nl2l). We compute the arrangement A(E), and traverse
its cells, moving from a cell to an adjacent cell, and maintaining the intersection of the
remaining objects that are not pierced by the current cell. (This is done by maintaining c
sorted lists, one per orientation; an insert/delete operation costs O(logn).) This gives us
an algorithm of time complexity O(nl3! logn). Notice that if S consists of simplices of d+ 1
orientations, then this algorithm yields an O(n!%2llogn) time algorithm. The following
theorem summarizes the main result of this section.

Theorem 2 Let S be a set of n c-oriented convez polytopes in E%, where 5] < d. Itis
possible to solve the 2-piercing problem for S in O(nL%J logn) time. In particular, if S



consists of simplices of d + 1 orientations, then the running time is O(n[dm logn).

For the case | 5] > d, we apply the naive solution that was described in the introduction,
exploiting the additional property that the intersection of any subset of S is either empty
or is a c-oriented polytope. That is, we compute the arrangement of S and traverse its cells,
moving from one cell to an adjacent cell, and maintaining as above the intersection of the
remaining set of objects that are not pierced by the current cell. The running time of this
algorithm is O(n?logn).

In the next section we mention a few cases for which we are able to obtain algorithms
that are more efficient that those that are implied by the general algorithm described above.

4 Applications

This section is divided into three parts. In the first part we obtain a new Helly-type theorem
as a corollary of the general method described in the previous section. In the second part
we show that for the class C of 4-sided convex polygons h(C,[[%) = co. Finally, in the third
part, we mention several cases for which better bounds than those that are implied by the
general method are attainable, due to some ‘boundary property’ that holds in these cases.

4.1 A new Helly-type theorem for homothetic triangles

Consider the case of 3-oriented polygons in the plane, i.e, homothetic triangles, and the
appropriate version of the 2-piercing problem. We apply the method of the previous section
to obtain a collection of at most 3 x 6 = 18 pairs (A;, B;) of disjoint regions, such that,
in each of them at least one of the regions, say, A;, is crossed only by edges of a single
orientation. Now, considering a pair (A, B), it is clear where to pick the piercing point in
A, and we check whether the remaining set of triangles that are not pierced by this point
is 1-pierceable. Thus, we have a linear-time algorithm for the 2-piercing problem for this
case. Moreover, the algorithm implies a Helly-type theorem, since, if there is no solution,
then it is always possible to find a counterexample of size at most 18 x (3 + 4), so that the
Helly-number h is at most 126.

Theorem 3 Let T be a class consisting of all homothets of a fized triangle in the plane.
Then h(T,[1?) < 126.

Remark 1: As mentioned above, this theorem was also discovered independently by
Katchalski and Nashtir [KN96], who proved that h(7,T[?) =9 in a direct way.

Remark 2: In order to prove a similar result for the case of homothetic quadrilaterals, i.e.,
all homothets (or even translates) of a fixed convex quadrilateral, we must specify a way
to pick a ‘best’ point as above in one of the regions of a pair of regions that is obtained by
the method of the previous section. However, this does not seem possible. In section 4.3 we
consider a slightly more general case, the case of 5-oriented convex polygons, and obtain an
O(nlogn)-time algorithm.
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k=2m+1=17

Pi—1

Dbi Pitm—1

Figure 2: The construction for £ = 17. Every proper subset is 2-pierceable, while the whole
set requires 3 points.

4.2 A non Helly-type theorem

Let C be the class of 4-sided (but not 4-oriented) convex polygons in the plane. We prove
below that h(C,[[%) = co. Consider any triangle A, and place k = 2m + 1 points py, ...,k
on the boundary of A; 3 points at the vertices of A and % at each of its edges. Define the
4-sided convex polygon @Q; as the convex hull of p;, ..., pitm—1, fori =1,...,k (addition of
subscripts is done modulo k). Put S = {Q1,...,Qx} (see Figure 2). Clearly, Q; N Q; # 0
iff {pi,...,Pitm—1} N {Djs -, Pjym—1} # 0. Therefore p; belongs to exactly m members of
S,1=1,...,k, and thus S is not 2-pierceable. On the other hand, S\{Q;} is 2-pierceable;
take the points pji,, and pjram. Since lim,, 1o k(m) = oo, the assertion (S, []?) = oo
follows.

Theorem 4 Let C be the class of 4-sided convex polygons, then h(C, HQ) = 00.

4.3 Looking at the boundary

In this section, we show that in some cases it is possible to obtain better bounds than those
implied by the method of the previous section. In these cases we also apply the general
method, but, in the last step, when considering the pairs of regions that were obtained,
we are able to decrease the size of the search space. In other words, instead of having
to consider all the cells in the clipped arrangement A(FE), we observe that it is sufficient
to consider only the arrangement A(QFE), where OF is the boundary of F, since all the
maximal cells of A(E) are adjacent to OF.

4.3.1 < 5-oriented polygons with 2 points

Let us consider any class Cy, |H| < 5, in the plane. That is, a class of at most 5-oriented
convex polygons. In this case, let A be the region of a pair (A, B) for which at most 3| = 2
orientations appear in its clipped arrangement A(A). It is easy to see that all the maximal
cells of A(A) are adjacent to the boundary 0A of A. We therefore compute in O(nlogn) time
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the intersection of JA with the n objects. Then, we traverse the O(n) intervals along 0A
(each object may give rise to at most O(c) intervals). The last step is done by maintaining
dynamically the intersection property (1-pierceability) of the complementary set of objects.
We thus obtain an O(nlogn) time algorithm.

Theorem 5 Let S be a set of n 5-oriented convex polygons. Then it is possible to find a
piercing pair for S (if such exists) in O(nlogn) time.

4.3.2 Homothetic triangles with 3 points

We can use the linear-time algorithm of section 4.1 in order to obtain an O(nlogn) time
algorithm for piercing a set S of n homothetic triangles in the plane with 3 points. Indeed,
we first check in linear time whether S is < 2-pierceable. If S is < 2-pierceable then we
are done, otherwise we consider the counterexample that was obtained which is of constant
size. We make all the possible assumptions for piercing this set with three points. Each
assumption gives rise to a set of three disjoint convex regions (homothetic triangles). We
apply the ‘tree process’ method to each of these triplets, and end up with O(1) triplets
of convex disjoint regions. Consider one such triplet (A, B,C). One of its regions, say A,
has at most 2 orientations appearing in its clipped arrangement A(A) (since, if all regions
have 3 orientations, then we can remove at least one orientation by applying the ‘tree
process’). It is easy to see that A has the boundary property, i.e., all the maximal cells of
A(A) are adjacent to the boundary 9A of A. We may therefore restrict our attention to
the O(n) intervals along 0A (each object intersecting A defines at most 2 intervals along
0A). We traverse A moving from one endpoint of an interval to the next. At the current
endpoint p, we check whether the set of objects that are not pierced by p is 2-pierceable. We
can maintain the 2-pierceability property of this complementary set under insertions and
deletions of objects in logarithmic time, using a linear-size dynamic data structure that is
reminiscent of the data structures constructed in [SW96] for the 4- and 5-piercing problems
for rectangles in the plane. We describe this data structure in the proof of Lemma 7 below.
We thus obtain an O(nlogn) algorithm.

Theorem 6 Let S be a set of n homothetic triangles. Then it is possible to find a piercing
triplet for S (if such ezists) in O(nlogn) time.

The previous theorem is based on the following lemma.

Lemma 7 The 2-pierceability property of a set of n homothetic triangles can be maintained
dynamically in O(logn)-time per update.

Proof. Let R be a set of n homothetic triangles in the plane. We need to show how
to maintain the 2-pierceability property (i.e., whether R is 2-pierceable or not) when a
homothetic triangle is either inserted to or deleted from R. For each orientation o, draw a
line through the ‘topmost’ edge of orientation o. Let Ly denote the set of these three lines.
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According to Sharir and Welzl [SW96], if R is 2-pierceable, then it can be pierced by two
points lying on the lines of Lr and we may assume that one of the piercing points lies on
a vertex of the arrangement of Lp.

Our data structure consists of three balanced binary trees, one per each orientation.
Assume w.l.o.g. that the first orientation is the vertical orientation and that the triangles lie
to the left of their vertical edge. Then the first tree is built as follows. Let 1 < 22 < --- < xp
be the projections of the vertical edges onto the z-axis. Store these values in sorted order
in the leaves of a balanced binary tree; 1 in the leftmost leaf, and so on. A node u of the
tree represents the corresponding subset R, of R (i.e. R, consists of the triangles in R for
which the projection of their vertical edge is stored in a leaf of the subtree rooted at u).
We associate with u the region T,, = NR,, (which is either empty or a homothetic triangle).
The tree can be constructed in a bottom-up manner in O(n) time, after sorting the leaf
values in O(nlogn) time. The second and third trees are constructed in a similar way.

We need to determine in logarithmic time whether R is 2 pierceable or not. First notice
that we can obtain Lpg, the three lines forming the ‘location domain’ of R, in constant time,
since they are the lines corresponding to the minimal (or maximal) values stored in the
three trees. Now let v be a vertex of the arrangement of L. We need to determine whether
the subset R, of R consisting of the triangles in R that are not pierced by v has a non-
empty intersection. We can obtain R, (implicitly) as the union of a logarithmic number of
represented subsets (see below), and since we have the intersection of each of these subsets,
we can compute NR, in logarithmic time.

How do we obtain R, as a collection of represented subsets ? Notice that v lies in a
triangle A iff it lies in the three half-planes defined by the edges of A. Let R, i = 1,2, 3,
denote the subset of R consisting of the triangles whose half-plane of the ¢’th orientation
doesn’t contain v. Clearly R U R?2 U R? = R,. We will perform a query in the i’th tree to
obtain the subset R as the union of a logarithmic number of represented subsets. Consider
for example the first tree, and let v, be the projection of v onto the z-axis. We search with
v, in the first tree (beginning at the root) for the smallest value x that is stored in a leaf
of the tree for which v, < z. This search defines a root-leaf path in the tree. Consider
the nodes of the tree that do not belong to this path and are the left children of nodes on
this path. The number of these nodes is logarithmic and the union of their corresponding
represented sets is exactly R}

Using standard techniques we can update this data-structure when a triangle is either
ingserted to or deleted from R in logarithmic time. Thus the 2-pierceability property can be
maintained in logarithmic time. O

Remark: We cannot obtain a similar theorem for the case of at most 5-oriented convex
polygons considered in the previous subsection, since we do not have a Helly-type theorem
for the 2-piercing problem in this case.
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5 Conclusion

The main result of this paper is a general method for solving the 2-piercing problem for
a set S of d-dimensional c-oriented polytopes. This method is much more efficient than
the naive method whenever |§| < d (e.g., when ¢ = d + 1 and S is a set of simplices). It
yields a linear-time algorithm and a new Helly-type theorem for the 2-piercing problem for
homothetic triangles in the plane. This Helly-type theorem allows us to apply the method
also to the 3-piercing problem for homothetic triangles and obtain an O(nlogn) algorithm,
since, in general, the method is based on the existence of a Helly-type theorem for the
corresponding (k — 1)-piercing problem.

Our method applied to the 2-piercing problem for d-dimensional axis-parallel boxes
yields an alternative linear-time algorithm to the one implied in a paper of Danzer and
Griinbaum [DG82| and also implies the corresponding Helly-type theorem of [DG82].
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