Approximating Smallest Enclosing Disks

Frank Nielsen*

Abstract

We describe a short and fast algorithm for finding ar-
bitrarily fine approximations of the smallest enclosing
disk of a planar point or disk set. Experimental re-
sults of an implementation are presented.

1 Introduction

The smallest enclosing disk (SED for short) problem
dates back to 1857 when J. J. Sylvester [7] first asked
for the smallest disk enclosing n points on the plane.
Although O(nlogn)-time algorithms were designed
for the planar case in the early 1970s [4, 6], its com-
plexity was only settled in 1984 with N. Megiddo’s
first linear time algorithm [3] for solving linear pro-
grams in fixed dimension. Unfortunately, these algo-
rithms exhibit a large constant hidden in the big-
Oh notation and do not perform so well in prac-
tice. E. Welzl [8] developed a simple recursive O(n)
randomized algorithm for point sets, called ”move-
to-front” heuristic, that is often used by practition-
ers (see Section 5). Recently, Fischer et al. [2, 1]
described a pivoting scheme resembling the simplex
method for linear programming that, despite no theo-
retical time bounds (besides proven termination), can
tackle exactly problems in large dimensions for ball
sets. Computing smallest enclosing disks are useful
for metrology, machine learning and computer graph-
ics problems. Fast constant approximation heuris-
tics are popular in computer graphics [5]. Our paper
aims at designing a fast deterministic (i.e., worst-
case time bounded) approximation algorithm that is
suitable for real-time demanding applications. Since
they gain in speed as the precision decreases, approx-
imation algorithms are well suited for such purposes.
Our simple implementation for point/disk sets is a
mere 30-line code which does not require to com-
pute the basic primitive of the smallest disk enclosing

*Sony Computer Science Laboratories.
E-mail: Frank.Nielsen@acm.org
TUniversité Antilles-Guyane, DSI GRIMAAG.

E-mail: rnock@martinique.univ-ag.fr

Richard Nock'

three disks. In fact, surprisingly, we exhibit a robust
approximation algorithm using only algebraic predi-
cates of degree 2 using integer arithmetic. Moreover,
as shown in Section 5, our floating-point implementa-
tion outperforms or fairly competes with traditional
methods while guaranteeing worst-case termination
time.

2 Approximating SED of Points

Let P = {P;, = (z4,9:),% € {1,...,n}} be a set of
n planar points. We use notations z(FP;) = z; and

y(P;) = y; to refer to point coordinates. Let Disk(C*,r*)

be the unique (see [8]) smallest enclosing disk of P
of center point C* (also called circumcenter or Eu-
clidean 1-center) and minimum radius r*. We want
to compute a (1 + €)-approximation, that is, a disk
Disk(C,r) such that r < (14€)r* and P C Disk(C,r).

2.1 Solving Decision Problems

Our approximation algorithm proceeds by solving dual
piercing decision problems (DPs for short; see Fig-
ure 1): given a set of disks B(r) = {B; = Disk(P;,r),i €
{1,...,n}}, determine whether NB(r) = N, B; = 0
or not. We relax the 1-piercing point problem to that
of finding a common piercing er*-disk (i.e., a disk of
radius er*): Namely, report whether there exists a
disk B = Disk(C,er*) such that B C NB(r) or not.

Lemma 1 Observe that for r > r*, there exists a
disk B of radius r(B) = r—rx* centered at C(B) = C*
fully contained inside NB.

Proof. In order to ensure that C* is in each B;(r), a
sufficient condition is to have r > max;{r;+dz(P;, C*)}.
Since B; C Disk(C*,r*),Vi € {1,2,...,n}, we have
max;{r; + d2(P;,C*)} < r*(x). Thus, provided r >
r*, we have C* € NB(r). Now, notice that Vi €
{17 2, ,TL},VO < 7! < (r_ri)_d2(Pi7 C*)7 DiSk(C*,T’) -
B;(r). Thus, if we ensure that ' < r —max}, (r; +
da2(P;, C*)), then Disk(C*,r") C NB(r). From ineq.
(%), we choose ' = r — r* and obtain the lemma (see
Figure 1). |

Bi(r) e
©OB)

P

Figure 1: Covering/piercing duality principle. Points
P, P, P; are associated to corresponding disks
Bi(r), Ba(r), B3(r) such that C(B;(r)) = P; and
r(Bi(r)) = r for i € {1,2,3}. We have Bi(r*) N
By(r*) N Bs(r*) = {C*}. For r > r*, there exists a
disk of radius r —r* fully contained in By (r)N B2 (r)N
Bs(r). Inset: SEB of 10 points (green), DP(1.2r*)
(purple) and enclosed ball (red) of radius 0.2r*.

Let [z,] be an interval on the x-axis where an
er*-disk center might be located if it exists. (That is
x(C) € [Tm,zp] if it exists.) We initialize z,,,z)r as
the z-abscissae extrema: ,, = max;(z;) —r, Ty =
ming(z;) + r. If xp < @y, then clearly vertical line
L: g = I=t2M geparates two extremum disks (those
whose corresponding centers give rise to x,, and x)
and therefore B(r) is not 1l-pierceable (and not er*-
disk pierceable). Otherwise, the algorithm proceeds
by dichotomy (see Figure 2). Let e = Z=FIM and
let L denotes the vertical line L : = e. Denote
by Br = {B; N Lli € {1,...,n}} the set of n y-
intervals obtained as the intersection of the disks of
B with line L. We check whether B, = {B;NL =
[ai, b5]|i € {1,...,n}} is 1-pierceable or not. Since By,
is a set of n y-intervals, we just need to check whether
min; b; > max; a; or not. If NBy # (), then we have
found a point (e,min; b;) in the intersection of all
disks of B and we stop recursing. (In fact we found
a(r =ey = [y, = max;a;,yy = min,; b;]) verti-
cal piercing segment.) Otherwise, we have NBr, =)
and we need to choose on which side of L to re-
curse. W.l.o.g., let By and B, denote the two disks
whose corresponding y-intervals on L are disjoint. We

choose to recurse on the side where B; N By is lo-
cated (if the intersection is empty then we stop by
reporting the two non-intersecting disks B; and Bs).
Otherwise, By N By # () and we branch on the side
where zp, g, = z(O(Bl))JQﬂ(C(Bm lies. At each stage

L(zpy)

'
4
F——1 ~

Y L(zp) L

M

Tm

—c

Figure 2: A recursion step: L : x = e intersects all
disks. Two y-intervals do not intersect on L. We
recurse on x-range [e,).

of the dichotomic process, we halve the x-axis range
where the solution is to be located (if it exists). We
stop the recursion as soon as xp; — Ty, < €5. Indeed,
if zpr — o < €5 then we know that no center of a
disk of radius er is contained in NB. (Indeed if such a
disk exists then both NBr(,,.) # 0 and NBr(z,,) # 0.)
Overall, we recurse at most 3 + [log, 1] times since
the initial interval width xp; — x,, is less than 2r*
and we consider 2r* > r > ”7

2.2 Dichotomy Search

Finding the minimum enclosing disk radius amounts
to find the smallest value r € R such that NB(r) #
(. That is 7* = argmin, N B(r) # (. We seek for
an (1 + €)-approximation of the minimum enclosing
disk of points by doing a straightforward dichotomic
process on relaxed decision problems. We always keep
a solution interval [a,b] where r* lies, such that at
any stage we have NB(a — %) = () and NB(b) # 0.
W.lo.g., let P, denote the leftmost x-abscissae point
of P and let P, € P be the maximum distance point
of P from P;. We have r = dy(Py, P») > r* (since
P C Disk(Py,r)). But da(Pr, P») < 2r* since both
P, and P, are contained inside the unique smallest
enclosing disk of radius 7*. Thus we have 7* € [, 7].

We initialize the range by choosing a = 5 < r* and
b =r < 2r*. Then we solve the 7r-disk piercing
problem with disks of radius e = GT% If we found
a common piercing point for NB(e) then we recurse
on [a,e]. Otherwise we recurse on [e,b]. We stop
as soon as b — a < e%. (Therefore after O(log, 1)
iterations since the initial range width b — a < r*).
At any stage, we assert that NB(a —) = 0 (by
answering that NB(a) does not contain any disk of
radius <) and B(b) # 0. At the end of the recursion

1
process, we get an interval [a — ,b] where 7 lies
T

in. Since b —a < e} < 6% and |[r* —a| < §
% (because B(a —) = 0), we get: b < r* + 2e7.
Since 7 < 2r*, we obtain a (1 + €)-approximation of
the minimum enclosing disk of the point set. Thus,
by solving O(log, %) decision problems, we obtain a
O(nlog; 1)-time deterministic (1 + €)-approximation
algorithm.

2.3 Bootstrapping

We bootstrap the previous algorithm in order to get
a O(nlog, 1)-time algorithm. The key idea is to
shrink potential range [a, b] of r* by selecting itera-
tively different approximation ratios €; until we en-
sure that, at kth stage, e, < e . Let Disk(C,r)
be a (1 + €)-approximation enclosing disk. Observe
that |2(C) — z(C*)| < er*. We update the z-range
[€m, zar] according to the so far found piercing point
abcissae z(C') and current approximation factor. We
start by solving the approximation of the smallest
enclosing disk for €, = 1. It costs O(nlog, é) =
O(n). Using the final output range [a,b], we now
have b — a < e;r*. Consider ¢, = £ and reiterate

2
until ¢, < e. The overall cost of the procedure is

ZZEEQ d O(nlog,2) = O(nlog, L). We get the fol-
lowing theorem:

Theorem 1 A (1 + €)-approzimation of the mini-
mum enclosing disk of a set of n points on the plane
can be computed efficiently in O(nlog, L) determin-
stic time.

3 Predicate Degree

Predicates are the basic computational atoms of algo-
rithms that are related to their numerical stabilities.
In the exact smallest enclosing disk algorithm [8], the
so-called InClircle containment predicate of algebraic
degree 4 is used on Integers. Since we only use /-
function to determine the sign of algebraic numbers,

Data :Aset S={S;= (z;,y:)|i € {1,...,n}}
of n points and an approximation fac-
tor e.

Result : Disk((z,y),r): a (1 + e-

approximation of the minimum
enclosing disk of S. That is we have
r* < r < (14 €)r*, where r* is the
minimum radius of enclosing disks.

1 xmin = mingefy . n} i
2 TMAT = MAX;e(1,. 0} T
8 di = maX;eqy,.. 0} |1Si — S1ll;
4 b= dl;
5 0= df—lg
6 € < 7(b—a)e
7 pierceable = false;
8 qdisjoint = false;
9 while b —a > e do
10 r= “T‘H’;
12 Ty = xmin + 1y
13 Ty = TMAT — T
15 pierceable = false;
16 while z); — z,, > € and —pierceable and
—qdisjoint do
17 | = fudim,
18 Ym = maXie(1, a3 ¥i — V12— (1 —3)%
20 m = argmaX;eqy, 1Y — /1 — (L — 2)%;
I I R R e o ()
22 M= argminegy i + r2 — (I — ;)%
23 if ypr >y, then
24 =1
25 y = Ymtun,
26 pierceable = true;
else
// m and M are arg indices of y,,, and
Ymrs
27 if ||Sm — Sm|| > 2(r —€) then
| qdisjoint = true;
else
28 if W > [then
29 | Tm =1;
else
30 | Ty =1
end
end
end
end
31 if pierceable then
32 | b=r;
else
if qdisjoint then
‘ a= IISmESMII te;
else
33 | a=m
end
end

end

Algorithm 1: (1 + €)-approximation algorithm of the
minimum enclosing disk of a 2d point set.

|| Method /Distribution || O Square max | (O Ring max || O Square avg | (® Ring avg ||
Eberly (¢ = 107°) 0.7056 0.6374 0.1955 0.2767
Ritter (e > 0.15) 0.0070 0.0069 0.0049 0.0049
ASED (e = 1072) 0.0343 0.0338 0.0205 0.0286
ASED (e = 1073) 0.0515 0.0444 0.0284 0.0405
ASED (e = 107%) 0.0646 0.0617 0.0392 0.0449
ASED (e = 107°) 0.0719 0.0726 0.0473 0.0527

Table 1: Timings. Experiments done on 1000 trials for point sets of size 100000. Maximum (max) and
average (avg) running times are in fractions of a second.

all computations can be done on Rationals using alge-
braic degree 2 (also observed in [1]). We show how to
replace the predicates of algebraic degree' 4 by pred-
icates of degree 2 for Integers: ”Given a disk center
(zi,yi;) and a radius r;, determine whether a point
(z,y) is inside, on or outside the disk”. It boils down
to compute the sign of (z —z;)? + (y —y;)? —r?. This
can be achieved using another dichotomy search on
line L : x = [. We need to ensure that if y,, > yar,
then there do exist two disjoint disks B,, and By,.
We regularly sample line L such that if y,, > yur,
then there exists a sampling point in [y, .| that
does not belong to both disks B,, and Bj;. In order
to guarantee that setting, we need to ensure some fat-
ness of the intersection of NB(r) N L by recursing on
the z-axis until we have z; —x,, < % In that case,
we know that if there was a common er*-disk intersec-
tion, then its center x-coordinate is inside [Ty, zaim]:
this means that on L, the width of the intersection
is at least Lz Therefore, a regular sampling on ver-
tical line L with step width % guarantees to find
a common piercing point if it exists. A straightfor-
ward implementation would yield a time complexity
O(nllog, 1). However it is sufficient for each of the
n disks, to find the upper most and bottom most lat-
tice point in O(log, 1)-time using the floor function.
Using the bootstrapping method, we obtain the fol-
lowing theorem:

Theorem 2 A (1 + €)-approzimation of the mini-
mum enclosing disk of a set of n points on the plane
can be computed in O(nlog, L) time using Integer
arithmetic with algebraic predicates InClircle of degree

!Comparing expressions y1 + /12 — (I —x1)2 > y2 +

r2 — (I — z2)? is of degree 4 for Integers. Indeed, by iso-
lating and removing the square roots by successive squaring,
the predicate sign is the same as (2r2 — (I—z1)? - (I—122)%)? >
4(r2 —(1—21)?)(r2 —(I—x2)?). The last polynomial has highest
monomials of degree 4.

4 Approximating SED of Disks

Our algorithm extends straightforwardly for sets of
disks. Counsider a set of n planar disks D = {Dy, ..., D,, }
with C(Dl) =F = (:v,-,y,-) and ’I“(D,) = r;. Let
B(T) = {B,|C(B,) = P,' and T(Bl) =Tr — 7“,'}. Us-
ing the dual piercing principle, we obtain that r* =
argmin,cp N B(r) # 0. (We have C* = NB(r*).) Ob-
serve also that r* > max;c(y1 ... n) 7. Initialization is
done by choosing b = r1 + max;eq1,... 03 (d2(Pr, ;) +
r;) and a = &. We now let:

r3 — 12+ (r +1ry)?
2(7‘1 +7“2)2

mBle = mBl + ('Z'BZ - 'Z’Bl)'

5 Experimental Results

We compare our implementation (see pseudo-code on
the left) with D. H. Eberly’s C++ implementation us-
ing double types that guarantees precision e = 107°
and has expected running time 10n but no known
worst-case bound better than O(n!). We also com-
pare our code with J. Ritter’s constant approxima-
tion (e ~ 15%) single-pass greedy heuristic used in
game programming [5]. Timings are obtained on an
Intel Pentium(R) 4 1.6 GHz with 1 GB of memory
for points uniformly distributed inside a unit square
(O) and inside a unit ring of width 0.01 (). Table 1
reports our timings. The experiments show that over
a thousand square/ring random point sets, our algo-
rithm maximum time is much smaller than that of D.
H. Eberly’s (in addition, this latter algorithm requires
O(log3 n) calls [8] to the expensive basic primitives of
computing the circle passing through three points).

We are grateful to Jason Hughes for pointing out a

typographic error that occurred when converting our
C code to IATEX.

References

[1]

K. Fischer and B. Gartner. The smallest enclosing
ball of balls: combinatorial structure and algo-
rithms. In Proceedings of the 19th Conference on
Computational Geometry, pages 292-301. ACM
Press, 2003.

K. Fischer, B. Girtner, and M. Kutz. Fast
smallest-enclosing-ball computation in high di-
mensions. In Proceedings of the 11th Annual Eu-
ropean Symposium on Algorithms, LNCS 2832,
pages 630-641. Springer-Verlag, 2003.

N. Megiddo. Linear programming in linear time
when the dimension is fixed. Journal of the ACM,
Vol. 31(1), pages 114-127, January 1984.

F. P. Preparata and M. I. Shamos. Compu-
tational Geometry: An Introduction. Springer-
Verlag, New York, NY, 1985.

J. Ritter. An efficient bounding sphere. In
A. Glassner, editor, Game Programming Gems,
pages 301-303. Academic Press, Boston, 1990.

S. Skyum. A simple algorithm for computing the
smallest enclosing circle. Information Processing
Letters, Vol. 37, pages 121-125, 1991.

J. J. Sylvester. A question in the geometry of
situation. Quarterly Journal of Mathematics, Vol.
1, page 79, 1857.

E. Welzl. Smallest enclosing disks (balls and ellip-
soids). In H. Maurer (Ed.), New Results and New
Trends in Computer Science, LNCS 555, pages
359-370. Springer-Verlag, 1991.

