
Visibility Queries among Horizontal Segments �

A Dynamic Data Structure

Sergei Bespamyatnikh� Matthew J� Katz� Frank Nielsen� Michael Segal�

�Department of Computer Science� University of British Columbia
�Department of Computer Science� Ben�Gurion University

�SONY Computer Science Laboratories Inc�� FRL
�Department of Communication Systems Engineering� Ben�Gurion University

� Introduction

Consider the following interactive computer game� A set of blue horizontal segments is drawn in
a window� The player must draw in the window� within a few seconds� a red segment that is not
visible from the bottom edge nor the top edge of the window�s boundary� If the red segment drawn
by the player is visible� then the player does not get any points for this move� otherwise� the number
of points is proportional to the length of the segment� After computing the score for this move� the
red segment is removed� and either a new blue segment is added to the scene or an existing blue
segment is deleted from the scene� The player must now draw again a red segment for the new
scene� get points for this move� and so on�

The main algorithmic di�culty in the implementation of this game� is to determine at each
round whether or not the red segment drawn by the player is visible from one of the horizontal
edges of the window�s boundary� We propose a data structure that overcomes this di�culty� More
precisely� we consider the following problem�
Problem� Maintain a set S of horizontal segments in the plane under insertions and deletions�
so that when given a query horizontal segment l� one can e�ciently determine whether l is visible
from the x�axis� in the sense that one can draw a vertical segment whose endpoints lie on the x�axis
and on l� respectively� which does not intersect any of the segments in S�

Our data structure for this problem is quite simple but new and neat� It is based on a segment
tree ��	� Its size is O
n log n�� where n is the current size of S� and it supports logarithmic�time
queries� An update� i�e�� insertion or deletion� costs O
log� n��

� The data structure

We maintain a segment tree T for the current set of segments S 
actually� for the projections of the
segments in S on the x�axis�� Consider a node v of T � Let Sv be the subset of S that is associated
with v� Sv is called the canonical subset of v� The segments in Sv are stored in the nodes of a
binary search tree Tv� according to their y�coordinates�

In addition� we store with v some information concerning the segments that are stored at the
descendants of v� Let rv be the horizontal interval associated with v� rv is called the canonical
interval of v� We store with v a boolean variable cv whose value is true if and only if the union
of the projections of the segments that are stored at the descendants of v completely covers rv�

�



We also store with v the y�coordinate yv of the highest segment among the segments stored at the
descendants of v that is visible from the x�axis 
ignoring all other segments��

The size of the data structure is O
n log n�� where n is the current size of S� We next describe
the query algorithm� and then the algorithms for insertion and deletion�

Query� Let l be a query horizontal segment� for which we wish to determine whether it is
visible from the x�axis� As usual� we 
rst partition l into O
log n� pieces corresponding to canonical
intervals� We shall treat each of the pieces separately� if one of them is visible then l is visible�
otherwise l is not visible�

Let lv be a piece corresponding to the canonical interval of node v� If one of the segments that
is stored in v is below lv� then clearly lv is not visible� We check therefore whether lv is below the
lowest segment in Tv� We repeat this check at each of the O
log n� ancestors of v�

At this point� we assume that lv is below all the segments that are stored in v or in one of v�s
ancestors� We still need to determine whether or not lv is completely hidden by the segments that
are stored at the descendants of v� First we check the value of the boolean variable cv� If it is
false� that is� if the union of the projections of the segments stored at the descendants of v does
not cover rv� then clearly lv is visible� Otherwise� we compare the height of lv with yv� the height
that is stored at v� lv is visible if and only if its height is less than yv�

The query time is O
log n�� where n is the current size of S� since the number of ancestors
visited all together is only O
log n��

Insertion� Assume we want to insert a new segment s into T � We insert s into the appropriate
O
log n� nodes of T 
see ��	�� In each of these nodes v� we insert s into the tree Tv� We now need
to update the boolean variables and the heights that are stored in the ancestors of v� This can be
done quite easily by walking along the path from v to the root�

Consider the parent w of v� If cw is already true� then it remains true� Otherwise� cw is true if
and only if either cu is true or there is at least one segment stored at u� where u is the second child
of w� Concerning yw� if s is the lowest among the segments in Tv� then we perform the second part
of the visibility test above for the subsegment sv 
i�e�� s restricted to rv�� That is� we determine
whether sv is visible taking into account only the segments in the descendants of v� If it is� then
yw is set to the maximum between its current value and the height of s� otherwise� yw does not
change� We now move to the parent of w� etc�� until we reach the root� The total time spent is
O
log� n�� where n is the current size of S�

Deletion� Assume we need to delete the segment s from T � We delete it from each of the
O
log n� nodes in which it is stored 
see ��	�� Let v be one of these nodes� We 
rst delete s from
Tv� Now� we need to update the variables stored with the nodes along the path from v to the root�
Let w be the parent of v� If cw is false� then it of course remains false� Otherwise� if after removing
s from v� v remains without any segments� then cw is true if and only if cv is true� Concerning
yw� if s was the lowest among the segments in Tv� then we check for the new lowest segment in Tv
whether it is visible� taking into account only the segments stored at the descendants of v� If it is
visible� then yw is set to the maximum between its current value and the height of this segment�
The total time spent is O
log� n�� where n is the current size of S�
Theorem� We can maintain a data structure of size O
jSj log jSj� in O
log� jSj� time per update�

so that given an horizontal query segment l� one can determine whether l is visible from the x�axis

in O
log jSj� time�

References

��� J� Bentley and J� Saxe� Decomposable searching problems I� Static�to�dynamic transformation� J� Algorithms � ��	
��� 
���
�
�

��� M� de Berg� M� van Kreveld� M� Overmars and O� Schwarzkopf� Computational Geometry� Algorithms and Applications� Springer� �		��

�


