Visibility Queries among Horizontal Segments —
A Dynamic Data Structure

Sergei Bespamyatnikh! Matthew J. Katz? Frank Nielsen® Michael Segal?

!Department of Computer Science, University of British Columbia
?Department of Computer Science, Ben-Gurion University
3SONY Computer Science Laboratories Inc., FRL
4Department of Communication Systems Engineering, Ben-Gurion University

1 Introduction

Consider the following interactive computer game. A set of blue horizontal segments is drawn in
a window. The player must draw in the window, within a few seconds, a red segment that is not
visible from the bottom edge nor the top edge of the window’s boundary. If the red segment drawn
by the player is visible, then the player does not get any points for this move; otherwise, the number
of points is proportional to the length of the segment. After computing the score for this move, the
red segment is removed, and either a new blue segment is added to the scene or an existing blue
segment is deleted from the scene. The player must now draw again a red segment for the new
scene, get points for this move, and so on.

The main algorithmic difficulty in the implementation of this game, is to determine at each

round whether or not the red segment drawn by the player is visible from one of the horizontal
edges of the window’s boundary. We propose a data structure that overcomes this difficulty. More
precisely, we consider the following problem.
Problem: Maintain a set S of horizontal segments in the plane under insertions and deletions,
so that when given a query horizontal segment [, one can efficiently determine whether [is visible
from the z-axis, in the sense that one can draw a vertical segment whose endpoints lie on the z-axis
and on [, respectively, which does not intersect any of the segments in S.

Our data structure for this problem is quite simple but new and neat. It is based on a segment
tree [2]. Its size is O(nlogn), where n is the current size of S, and it supports logarithmic-time
queries. An update, i.e., insertion or deletion, costs O(log?n).

2 The data structure

We maintain a segment tree 7 for the current set of segments S (actually, for the projections of the
segments in S on the z-axis). Consider a node v of 7. Let S, be the subset of S that is associated
with v; S, is called the canonical subset of v. The segments in S, are stored in the nodes of a
binary search tree T, according to their y-coordinates.

In addition, we store with v some information concerning the segments that are stored at the
descendants of v. Let r, be the horizontal interval associated with v; r, is called the canonical
interval of v. We store with v a boolean variable ¢, whose value is true if and only if the union
of the projections of the segments that are stored at the descendants of v completely covers r,.

We also store with v the y-coordinate y, of the highest segment among the segments stored at the
descendants of v that is visible from the z-axis (ignoring all other segments).

The size of the data structure is O(nlogn), where n is the current size of S. We next describe
the query algorithm, and then the algorithms for insertion and deletion.

Query. Let [be a query horizontal segment, for which we wish to determine whether it is
visible from the z-axis. As usual, we first partition [into O(log n) pieces corresponding to canonical
intervals. We shall treat each of the pieces separately; if one of them is visible then [is visible,
otherwise [is not visible.

Let [, be a piece corresponding to the canonical interval of node v. If one of the segments that
is stored in v is below [,, then clearly [, is not visible. We check therefore whether [, is below the
lowest segment in 7,. We repeat this check at each of the O(logn) ancestors of v.

At this point, we assume that [, is below all the segments that are stored in v or in one of v’s
ancestors. We still need to determine whether or not [/, is completely hidden by the segments that
are stored at the descendants of v. First we check the value of the boolean variable ¢,. If it is
false, that is, if the union of the projections of the segments stored at the descendants of v does
not cover r,,, then clearly [, is visible. Otherwise, we compare the height of [, with y,, the height
that is stored at v. [, is visible if and only if its height is less than y,.

The query time is O(logn), where n is the current size of S, since the number of ancestors
visited all together is only O(logn).

Insertion. Assume we want to insert a new segment s into 7. We insert s into the appropriate
O(logn) nodes of T (see [1]). In each of these nodes v, we insert s into the tree 7,. We now need
to update the boolean variables and the heights that are stored in the ancestors of v. This can be
done quite easily by walking along the path from v to the root.

Consider the parent w of v. If ¢, is already true, then it remains true. Otherwise, ¢, is true if
and only if either ¢, is true or there is at least one segment stored at w, where u is the second child
of w. Concerning 1, if s is the lowest among the segments in 7T,, then we perform the second part
of the visibility test above for the subsegment s, (i.e., s restricted to r,). That is, we determine
whether s, is visible taking into account only the segments in the descendants of v. If it is, then
Yw 18 set to the maximum between its current value and the height of s, otherwise, y,, does not
change. We now move to the parent of w, etc., until we reach the root. The total time spent is
O(log?® n), where n is the current size of S.

Deletion. Assume we need to delete the segment s from 7. We delete it from each of the
O(logn) nodes in which it is stored (see [1]). Let v be one of these nodes. We first delete s from
T,- Now, we need to update the variables stored with the nodes along the path from v to the root.
Let w be the parent of v. If ¢, is false, then it of course remains false. Otherwise, if after removing
s from v, v remains without any segments, then ¢, is true if and only if ¢, is true. Concerning
Yw, if s was the lowest among the segments in 7,, then we check for the new lowest segment in 7,
whether it is visible, taking into account only the segments stored at the descendants of v. If it is
visible, then y,, is set to the maximum between its current value and the height of this segment.
The total time spent is O(log® n), where n is the current size of S.

Theorem. We can maintain a data structure of size O(|S|log|S|) in O(log?|S|) time per update,
so that given an horizontal query segment l, one can determine whether [is visible from the x-azis
in O(log|S|) time.

References
[1] J. Bentley and J. Saxe, Decomposable searching problems I: Static-to-dynamic transformation, J. Algorithms 1 (1980), 301-358.

[2] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry: Algorithms and Applications, Springer, 1997.

