
Volumetric Illustration: Designing 3D Models with Internal Textures

Shigeru Owada‡† Frank Nielsen† Makoto Okabe‡† Takeo Igarashi‡§

‡The University of Tokyo †Sony CS Laboratories Inc. §PRESTO/JST

Abstract
This paper presents an interactive system for designing and browsing
volumetric illustrations. Volumetric illustrations are 3D models with
internal textures that the user can browse by cutting the models at
desired locations. To assign internal textures to a surface mesh, the
designer cuts the mesh and provides simple guiding information to
specify the correspondence between the cross-section and a reference
2D image. The guiding information is stored with the geometry and
used during the synthesis of cross-sectional textures. The key idea is to
synthesize a plausible cross-sectional image using a 2D texture-
synthesis technique, instead of sampling from a complete 3D RGB
volumetric representation directly. This simplifies the design interface
and reduces the amount of data, making it possible for non-experts to
rapidly design and use volumetric illustrations. We believe that our
system can enrich human communications in various domains, such as
medicine, biology, and geology.

Keywords: Interactive Techniques, Texture Synthesis, Non-
Photorealistic Rendering, Volumetric Modeling

1. Introduction

Surfaces are the most popular geometric representation for 3D models.
They are widely used because they are compact, making them easy to
construct, transmit, and render. However, the application of a surface
representation is limited because it lacks internal information. For
example, it is impossible to cut the model and inspect the detailed
internal structures.

Volumetric representations have complementary advantages and
limitations. Since a volumetric representation stores internal
information, the user can cut a model and observe internal structures.
However, the amount of data required generally far exceeds that of a
surface representation, making storage, transmission, modeling, and
rendering much more difficult. Modeling is especially problematic,
although the other problems can eventually be mitigated by more
memory, faster processors, and networks. Since modeling problems are
closely related to the limitations of human perception and manipulation,
the design of appropriate user interfaces plays a critical role in
addressing them.

The main sources of volume data are the capture of real-world objects
and procedural design. However, these are not appropriate for drawing
volumetric illustrations quickly for communication purposes. Some
interactive methods use 3D input devices (e.g., a Phantom), but they
are unsuitable for designing detailed internal textures.

Control map

Reference images

Cutting the model

Textured cross-section

Figure 1 System overview. The user can cut the model anywhere and
observe internal textures. Internally, the system first computes a control
map using predefined guiding information and then synthesizes the
texture using the control map and the reference textures.

Our goal is to develop an interactive designing and browsing system
that allows the user to add interesting textures to surface meshes
manually by using existing 2D reference images (Figure 1).

We cannot see all of the 3D volumetric information simultaneously;
because of occlusion, we can see only one 2D cross-section at a time.
For example, illustrations in biology textbooks or scientific magazines
often show cross-sections of a volumetric object to explain internal
structures (Figure 2). It is also important to note that these illustrations
are the result of careful design processes rather than a literal simulation
of reality. In Figure 2, for example, nuclei are seen in all the cells in the
illustration, while an actual cross-section would contain cells whose
nuclei were not visible.

Based on this observation, we propose a new representation for 3D
models with internal textures, namely one in which the system
synthesizes the internal textures for a cross-section by using 2D
reference images instead of maintaining all the 3D volumetric data
(Figure 1). To assign internal textures to a model, the designer specifies
the correspondence between a geometric cross-section and a reference
2D image by providing guiding information, such as flow orientation.
This approach significantly reduces the amount of data that the model
requires. It also allows designers to add 3D internal texture to a model
without specifying each voxel manually.

Our technical contributions are the interfaces that are used to assign
internal textures to a given surface mesh and the algorithms that

synthesize textures on a cross-section. On a larger scale, our
contribution is a modeling structure in which the specification and
viewing of simple volumetrically textured models is easy and
convenient, allowing non-experts to create volumetric illustrations
rapidly.

Figure 2 An example of an illustration that reveals internal structures
(courtesy of Saeko Sato).

2. Related work

Volumetric modeling. One popular approach to designing volume
data is to use procedural methods [Perlin 1985; Kniss et al. 2002],
which enable the user to design various 3D structures, such as marble,
clouds, and fire, using relatively simple programs. Cutler et al. [2002]
proposed a scripting language for volumetric modeling. However, it is
difficult for most people to obtain a desired texture by programming or
adjusting parameters.

Another popular source of volumetric data is the capture of existing
real objects using special-purpose instruments, such as computed
tomography (CT) scanners or cameras to take pictures of the slices
[Banvard 2002]. However, the user can capture only existing objects. It
is often desirable to design appropriate representations for
communication purposes manually.

There are systems that use 3D pointing devices [Galyean and Hughes
1991; Ferley et al. 2000] or standard 2D devices [Wang and Kaufman
1995] to create 3D volumes. However, they are designed mainly to
convey the overall shape of a model and it is still difficult to design the
detailed internal textures of 3D volumes.

Texture synthesis. Texture synthesis algorithms take reference images
as input and synthesize new images that appear similar. Texture
synthesis algorithms can be categorized into four types: frequency
domain, pixel-based, patch-based, and non-periodic tiling. Early
systems used frequency domain techniques [Heeger and Bergen 1995],
but they can handle only specific types of texture. The pixel-based
approach [Efros and Leung 1999; Wei and Levoy 2000] uses a simpler
strategy, and various extensions have been developed [Ashikhmin
2001; Hertzmann et al. 2001]. The patch-based [Efros and Freeman
2001; Kwatra et al. 2003] and non-periodic sampling [Stam 1997;
Cohen et al. 2003] approaches can generate high-quality images
quickly.

Some texture-synthesis techniques have been extended to 3D textures.
Heeger and Bergen [1995] extended their frequency domain methods
to 3D textures, and Wei [2001] used a pixel-based technique to
generate 3D volumes from 2D references. Other extensions synthesize
textures on the surface of 3D models; Turk [2001] used a pixel-based
technique and Praun et al. [2000] used a patch-based technique.

Non-photorealistic modeling and rendering. Our system draws
inspiration from various non-photorealistic rendering (NPR) systems
that focus on the communication of particular information rather than
the simulation of light transport [Gooch and Gooch 2001]. Our system
is particularly influenced by the stylized rendering of 3D models that
synthesize interesting 2D pictures by adding details to simple 3D
geometries on the fly [Lake et al. 2000; Kalnins et al. 2002]. In a
similar spirit, we synthesize detailed textures on cross-sections of
simple surface models.

Some systems also address the problem of authoring. Hertzmann et al.
[2001] introduced a painting interface for directing the texture-
synthesis process for various artistic expressions; Kalnins et al. [2002]
proposed an interface for painting a 3D model to specify rendering
styles directly. Like these systems, our system provides a tailored user
interface for intuitively designing volumetric illustrations.

3. User interface

3.1 Browsing interface

The system comprises two functions: browsing and modeling. The
browsing interface is a subset of the modeling interface. The browsing
interface is a standard 3D model viewer with an extension that allows
inspection of internal textures using a cut operation. Rotating and
translating the model are assigned to the right mouse button, and
cutting the model is assigned to the left mouse button. If the right
button is pressed on the model, the model rotates. If the right button is
pressed elsewhere, the model translates parallel to the screen.

The user can cut the model by drawing a freeform stroke that crosses
the model on the screen [Igarashi et al. 1999] (Figure 3). The cut object
then opens automatically with animation [Owada et al. 2003] and the
user can see the internal textures on the cross-section. The model closes
when the user clicks an empty space.

Figure 3 Inspecting internal structures using a freeform cut operation.

Although our current implementation uses a cut operation that is based
on a freeform stroke, the framework can easily be extended to support
other interfaces for specifying cross-sections, such as 3D magic lenses
[Viega et al. 1996] and two-handed operations using a prop and a plate
[Hinckley et al. 1994].

3.2 Modeling interface

The modeling operation starts by loading a predefined surface mesh
(i.e., a surface mesh that delimits volumetric regions) and predefined
2D images. The goal of the modeling operations is to specify how
given images are to be mapped to the interior of the given surface mesh,
while existing methods usually specify textures on surfaces [Hanrahan
and Haeberli 1990; Pederson 1996]. The modeling process has the
following steps.

1. Cut the target 3D model and specify a 3D region to be textured by

clicking on the cross-section.
2. Choose one of the three texture types to use for the region.

3. Import a reference 2D image.
4. Establish the correspondence between the 2D reference image

and the cross-section of the 3D model by providing the necessary
guidance information.

5. Repeat steps 1-4 for each 3D region.

We explain each step in turn.

3.2.1 Specifying a region to be filled

First, the user cuts the target surface mesh using the freeform cut
operation. The cross-section reveals the internal structure of the model
and can be divided into several closed regions. For example, a model
of an egg might consist of a spherical surface mesh representing the
yolk enclosed by a larger sphere representing the egg white. In this case,
the cross-section has two regions. The user can simply click on the
target region on the cross-section to specify the 3D region to be
textured.

3.2.2 Selecting a texture type

When the user clicks on the target region on the cross-section, the
system opens a dialog box that is used to specify the texture type
(Figure 4a). Once the user has specified the texture type, the system
opens a separate pane that shows the reference image and a reference
cube (Figure 4b). The reference cube is an intermediate representation
that visualizes the relationship between the 2D reference image and the
3D region. Steps 3 and 4 differ slightly for each texture type. Therefore,
we first introduce the three texture types and then explain the steps for
each.

Reference image

Reference cube

Loaded model

 (a) (b)
Figure 4 Window layout of the system for assigning textures to a
model.

The current system supports three types of textures: isotropic, layered,
and oriented (Figure 5). Isotropic textures have a uniform distribution
in the 3D space with no dependency on position or orientation. All of
the cross-sections of an isotropic texture look similar, regardless of
their location or orientation. Examples include a sausage, a sponge, and
any other material that consists of isotropic elements. Layered textures
have varying appearances according to their position in the axial or
radial direction. Examples include kiwi fruits, human skin, tree trunks,
and leaves. Layered textures require depth information for the target
3D region. Finally, oriented textures are defined by both a reference
image and a flow direction; the appearance of an oriented texture
depends on the orientation of the cut-plane relative to the flow-direction
(Figure 5c). Examples include muscle, plant stems (of
monocotyledonous plants), and any other material that consists of
bundled long fibers. The oriented texture requires that the flow
orientation in the target 3D region be specified.

We do not claim that these three types cover all possible real-world
textures. Some textures can be combinations of layered and oriented
textures, and some have more complicated structures. We support these
three types in the current implementation because they are relatively
easy to understand, they can be specified with a simple interface, and
they cover a wide range of interesting textures that are commonly seen
in organic materials. Future work will investigate other types of texture
filling.

(a) Isotropic (b) Layered (c) Oriented

Figure 5 Examples of texture types

3.2.3 Isotropic textures

The user imports a reference image by dragging an image file and
dropping it onto the source image area in the main window. The user
can choose a specific region of the reference image by rubber banding.
The selected region is immediately transferred to all faces of the
reference cube and to the cross-section of the surface mesh using a
texture-synthesis technique. No guidance information is required in this
case (Figure 6).

Region selection
by rubber banding

No user
interaction

Reference image
Reference cube

Cross-section
Figure 6 Using an isotropic texture. The user specifies a region to use
by rectangular rubber banding, and it is then transferred to all faces of
the reference cube and the cross-section.

3.2.4 Layered textures

A layered texture requires additional guidance information in the
surface mesh to specify the mapping between the image and the model.
The user first draws two freeform strokes that correspond to the upper
and lower bounds of the layer on the imported reference image (Figure
7, left). The first and last points of the two strokes are connected by
straight lines to carve out a portion of the input image. Then, texture-
synthesis techniques fill the side faces of the reference cube using the
portion of the image as a reference (Figure 7, middle). The user then
specifies two corresponding upper and lower bounds in the surface
mesh by clicking a boundary or drawing a stroke on the cross-section
(Figure 7, right). Clicking on the boundary selects the associated
surface region and the stroke becomes the constraint on the cross-
section (Figure 8).

Region selection
by two strokes Set

correspondences

Reference image Reference cube Cross-section
Figure 7 Using a layered texture. The red and blue marks on the
reference image define the upper and lower bounds for the algorithm.
The texture-synthesis techniques fill the side faces of the reference cube,
using the image between the two marks as a reference. Similarly, the
red and blue marks on the surface mesh define the upper and lower
bounds. The texture on the cross-section is synthesized using the
reference image as an example.

(a) (b)
Figure 8 Clicking a boundary on the cross-section selects the associated
surface region as the upper or lower bound (a). We assume that the user
has predefined the correspondence between a boundary and a surface
region (provided as a surface mesh). A stroke drawn in the interior of a
cross-section becomes a bound on the cross-section (b).

3.2.5 Oriented textures

An oriented texture has distinct appearances in cross-sections that are
perpendicular and parallel to the flow orientation. Our current
implementation asks the user to provide a reference image for the
cross-sections perpendicular to the flow orientation. The reference
image must be isotropic. The user specifies a rectangular region in the
reference image using rubber banding. The system then synthesizes the
top face of the reference cube using the selected region as a reference.
Then, it generates a reference volume by sweeping the image vertically
and shows textures for the cross-sections parallel to the flow orientation
on the side faces of the reference cube.

We experimented with other strategies for specifying the reference
volume. One let the user specify the images for the side faces of the
volume, and the other let the user specify the images on both the top
and side faces. We used Wei’s [2001] volumetric texture-synthesis
technique to synthesize the reference volume in these cases. We did not
pursue this direction further in our current implementation because it
was too slow and the quality of the resulting volume was unsatisfactory.
However, it is sometimes desirable to specify the appearance of side
faces, and in the future we will investigate efficient supporting
strategies.

An oriented texture requires the user to specify the flow field across the
target region as guidance information. This is done by drawing short
arrows that represent local flow directions on the cross-section and
surface of the region (Figure 9, right) [Turk 2001]. Our current
implementation does not allow the user to draw arrows that are not

parallel to the cross-section. Therefore, the user should cut the model
parallel to the desired flow orientation.

Region selection
by rubber banding

Reference image
Reference cube

Cross-section

Set correspondences
by flow field

Figure 9 Using an oriented texture. The user specifies a region to use
by rectangular rubber banding, and it is then transferred to the top face
of the reference cube. The system generates the side faces by sweeping
the image on the top face vertically. The user draws short arrows on the
cross-section to specify the flow orientation.

4. Algorithms

This section describes the algorithms and implementation details for
synthesizing a texture for a given cross-section using the reference
images and the associated guidance information. The cutting operation
cuts the model by sweeping a user-drawn 2D stroke in the direction
perpendicular to the screen (we use orthogonal projection). Using this
curved plane, a model is divided by CSG operations [Hoffman 1989].
The parametrization of the cross-section is given as follows: the y-axis
is defined along the cutting stroke and the x-axis is defined along the
sweeping direction. The starting point of the stroke becomes y=0 and
the corner of the model’s bounding box nearest the screen becomes
x=0. The imported surface mesh is scaled so that the size of the
bounding box equals 1, and the pixel size of the synthesized texture is
1/150~1/400 in our current implementation. A cross-sectional bitmap
is obtained by synthesizing the pixel color at each grid point on this
parameterized cross-section within a rectangular region that covers the
model’s bounding box. If the user wants to change the scale of the
synthesized texture, the original image must be scaled beforehand. We
describe our texture-synthesis algorithms for each of the three texture
types.

4.1 Isotropic textures

An isotropic texture has no dependency on position or direction.
Therefore, we simply use a standard 2D texture-synthesis algorithm to
construct a 2D texture image for the cross-section [Wei and Levoy
2000; Cohen et al. 2003; Kwatra et al. 2003]. The system uses the
selected region in the original reference image as the reference for the
synthesis directly. The reference cube exists only to give feedback to
the user. Note that there is no guarantee of obtaining exactly the same
image when a model is cut twice at the same cross-section. However,
since our aim is to convey a volumetric impression rather than to
generate consistent volumetric data, we believe that this simple
approach is sufficient.

4.2 Layered textures

A layered texture has an appearance that varies according to the depth.
Therefore, the algorithm needs depth information for each pixel in the
reference image and target cross-section. Figure 10 illustrates the
overall process. The system generates a reference control map for the
reference image and a target control map for the cross-section. A
control map is a grayscale 2D image in which the floating-point pixel
values indicate associated depth values.

The grayscale values of the reference control map represent a smooth
2D depth field constrained by the two bounds provided in the reference
image. The mark for the upper bound (red curve in Figure 10) is
associated with depth value 0 and that for the lower bound (blue curve
in Figure 10) is associated with depth value 1. We use a 2D thin-plate
interpolation technique [Turk and O’Brien 1999] to compute this
smooth 2D depth field (reference control map in Figure 10). The depth
field is given as a continuous function that returns a scalar value for a
given 2D position. This function is sampled on each pixel location on
the reference control map, which has the same resolution as the
reference image.

Reference image
Synthesized
cross-section

Reference
control map Target control map

Figure 10 Overview of texture synthesis for layered textures. The
system synthesizes the texture bitmap for a cross-section by using the
reference image, the reference control map associated with the
reference image, and the target control map associated with the target
texture.

To construct the target control map, the system first computes a 3D
scalar field using the user-defined upper and lower bound 3D
geometries as constraints. The upper-bound geometry (a surface region
or a line in 3D space) is associated with depth value 0 and the lower-
bound geometry is associated with depth value 1. Again, we use Turk
and O’Brien’s [1999] 3D thin-plate interpolation technique to construct
this smooth 3D scalar field. When the user cuts the model, the system
generates a 2D target control map by sampling the aforementioned 3D
depth field on the cross-section.

Given the reference image, reference control map, and target control
map, it is now possible to start the texture synthesis process using a
pixel-based technique. This synthesis process is similar to field
distortion synthesis, which is used for texture synthesis on surfaces
[Turk 2001; Zhang et al. 2003]. The differences are as follows (also see
Figure 11):

1. An orientation field is computed from the target control map as the

gradient direction in the target control map.
2. Each pixel in the reference image also has an orientation computed

as the gradient direction in the reference control map. The
neighboring structures are computed according to this orientation.

3. The order of synthesis is determined using the depth value of pixels.
4. When synthesizing a pixel in the target image, the search space in

the reference image is restricted by the depth value of the pixel
being synthesized; pixels whose depth value equals that of the
synthesizing pixel are subject to the search. In our implementation,
real-valued depth values are discretized into 32 levels and the pixels
are indexed according to the discretized scalar level during
preprocessing.

Reference control map

Reference image

Target control map

Synthesized texture bitmap

Check
gradient

and
depth value

Check
gradient

and
depth value

Compare the pixels
in the rotated neighborhood

Rotate the
neighborhood

Rotate the
neighborhood

Figure 11 Computing the pixel color in the synthesized texture. First,
the system rotates the neighborhood of the target pixel so that the
gradient of the target control map matches that of the reference control
map. Then, the system compares the rotated neighborhood of the target
pixel with that of the reference image around a pixel whose gray-scale
value in the reference control map is identical to the gray-scale value in
the target control map.

4.3 Oriented textures

The synthesis process for an oriented texture requires a 3D reference
volume and a flow field defined in the 3D region in the surface mesh.
As already discussed, the 3D reference volume is obtained by
sweeping the top face of the reference cube vertically. The top face is
synthesized using the selected region in the reference image as the
example. The reference volume is oriented vertically (each pixel in the
reference volume is associated with a vertical flow vector) and the size
of the reference volume is 64×64×64.

The construction of the 3D flow field again uses the thin-plate
interpolation technique [Turk and O’Brien 1999], employing user-
defined arrows as constraints. A smooth scalar-valued interpolation
function is constructed for each xyz component. The flow field is
constructed by combining them and normalizing the resulting flow
vectors. This approach can produce singular points where no flow is
defined. However, singular points rarely appear on the cross-section in
our system because the user cuts the model using a freeform stroke.
When singular points do appear, we assign a random orientation to the
pixel. After obtaining the 3D flow field, the system generates a 2D
target control map for the given cross-section (each pixel is associated
with a flow orientation) by sampling the flow vectors along the cross-
section.

At this point, we have the 3D reference volume (associated with
vertical flow orientation) and the 2D control map for the cross-section
that contains the flow vectors for each pixel. Given this information,
the system computes the color for each pixel in the cross-section by
finding a pixel in the reference volume that has a similar neighborhood
[Wei and Levoy 2000]. The similarity of neighbors is computed as
follows. The neighborhood of the pixel on the cross-section is
approximated by a small flat rectangle. For each pixel in the reference
volume, the system samples the neighborhood in a corresponding
small flat rectangle whose slant angle (angle between the rectangle and
the vertical flow vector) equals that of the rectangle on the cross-section
(Figure 12). Rotation about the flow vector does not matter, because

we assume that the reference volume has an isotropic structure on
cross-sections perpendicular to the flow orientation.

Given the rectangle on the cross-section and that in the reference
volume, the system can now compare the similarity between the two.

Ideally, the system should sample every possible small rectangle in the
entire reference volume. For performance reasons, however, the system
samples pixels in a slanted 2D square region at the center of the
reference volume and uses the resulting image as a reference for
standard 2D texture synthesis. In our current implementation, the size
of the square is 45×45 (to fit within the reference volume completely).
We further reduce the computation time by caching the sampled image
using discretized slant angles as keys (a discretization step is π/32).

Reference volume

Cross-section with flow vectors

Synthesized
textures

Neighborhood of
the target pixel

Figure 12 Finding pixels that have a similar neighborhood in the
reference volume for each pixel in the cross-section.

5. Results

Figure 13 shows some volumetric illustrations that were created using
our system. The amount of data in the models, time for design, and
time for synthesizing the cross-section are summarized in Table 1. For
isotropic and oriented textures, we used a three-level multi-resolution
pyramid with a 3×3 square neighbor for lower resolution and a 5×5 L-
shaped neighbor for higher resolution. For layered textures, we used a
3×3 square neighbor for lower resolution and a 5×3 rectangular
neighbor for higher resolution. We used a laptop computer with a
Pentium M 1.6-GHz processor and 1 GB of RAM. Although in some
cases it took more than 10 seconds to obtain the result for the finest
resolution, this did not impede the interactive modeling process
because progressive synthesis of cross-section images frees the user
from waiting for the final result each time. Since the resolution of the
cross-section is approximately 300×300, the quality is comparable to
that of 3003 colored voxels, which would require approximately 80
MB of storage.

(a) Cucumber

(b) Bamboo

(c) Stomach (d) Tooth

Figure 13 Results

Title Amount of data

(without
compression)

Modeling time
(excluding
mesh editing)

Synthesis
time

Meat (Fig. 1) 622 kb 90 sec 22 sec
Cucumber 53 kb 40 sec 4 sec
Bamboo 291 kb 30 sec 14 sec
Stomach 402 kb 15 sec 18 sec
Tooth 307 kb 120 sec 32 sec
Table 1 Statistics for the example models

6. Conclusions and future work

We described a modeling and browsing system that adds internal
textures to a surface mesh. The user provides 2D reference images and
a surface mesh with simple guidance information that specifies the
correspondences between them. When the user cuts the model, the
system synthesizes cross-sectional images using 2D texture-synthesis
techniques. This system would be useful for conveying volumetric
information, such as between a teacher and students, a doctor and a
patient, or a virtual-reality content-provider and consumers. Although
the lack of real volumetric data makes some applications impossible,
such as translucent rendering or volumetric simulation, our lightweight
data representation may well be useful in many applications.

Nevertheless, our system has several limitations. One is the
computational cost. A layered texture rotates the neighbors so that the
gradient of the target control map matches that of the reference control
map, while an oriented texture generates a 2D reference image by
slicing the reference volume at an appropriate angle for each pixel.
These processes require more computation than standard texture
synthesis. The quality of the synthesized image also requires
improvement, in part because of the cascading resampling and
resulting distortion. In future work, we will improve both the
performance and quality of the overall process.

One interesting avenue for future research is to enhance images of the
cross-section by using the information that is embedded in the pixels of
the reference map. We are currently exploring text annotation and
displacement mapping. The pixels of the reference image are
associated with annotations and displacements, and the system adds
them to the corresponding pixels on the cross-section. Text annotation
allows designers to add textual explanations to the internal material of
3D models, which would be useful for educational and communication
applications. Displacement mapping can add realism to a cross-section,
as cross-sections of real objects cannot be perfectly flat. Adding such
additional information to 3D regions directly can be very difficult, but
is straightforward in our framework.

We are also interested in designing other interaction techniques to
explore the internal textures of 3D models, in addition to the current
freeform cutting. As McGuffin et al. [2003] suggested, active
interaction can facilitate the understanding of volumetric structures as
compared to passive browsing of static images.

Acknowledgments

We thank Professor John F. Hughes, Professor Issei Fujishiro, and Dr.
Kazuo Nakazawa for their detailed comments and advice based on
their experience and deep understanding. Thanks also to Ms. Katrina
Avery and Textcheck service for their quick and accurate proofreading.
This work was funded in part by grants from IPA (Information-
Technology Promotion Agency, Japan).

References

ASHIKHMIN, M. 2001. Synthesizing Natural Textures. In Proceedings of the
Symposium on Interactive 3D Graphics 2001, 217-226.

BANVARD, R.A. 2002. The Visible Human Project® Image Data Set From
Inception to Completion and Beyond, In Proceedings CODATA 2002: Frontiers
of Scientific and Technical Data , Track I-D-2: Medical and Health Data,
Montréal, Canada, October, 2002.

COHEN, M.F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang Tiles for
Image and Texture Generation. ACM Transactions on Graphics (Proc. Siggraph
2003), 287-294.

CUTLER, B., DORSEY, J., MCMILLAN, L., MULLER, M., AND JAGNOW, R. 2002,
A Procedural Approach to Authoring Solid Models. ACM Transactions on
Graphics (Proc. Siggraph 2002), 302-311

EFROS, A.A., AND FREEMAN, W. T. 2001. Image Quilting for Texture Synthesis
and Transfer. In Proceedings of Siggraph 2001, 341-346.

EFROS, A.A., AND LEUNG, T. 1999. Texture Synthesis by Non-parametric
Sampling. In Proceedings of International Conference on Computer Vision
(ICCV ’99), 1033-1038.

FERLEY, E., CANI, M.P., AND GASUEL, J.D. 2000. Practical Volumetric
Sculpting. The Visual Computer, 16(8), (2000) 469-480.

GALYEAN, T.A., AND HUGHES, J.F. 1991. Sculpting: An Interactive Volumetric
Modeling Technique. In Proceedings of Siggraph 1991, 109-116.

GOOCH, B., AND GOOCH, A. 2001. Non-Photorealistic Rendering. A. K. Peters.

HANRAHAN, P., AND HAEBERLI, P. 1990. Direct WYSIWYG Painting and
Texturing on 3D Shapes. In Proceedings of Siggraph 1990, 215-223.

HEEGER, D. J., AND BERGEN, J.R. 1995. Pyramid-based texture analysis and
synthesis. In Proceedings of Siggraph 1995, 229-238.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B., AND SALESIN, D. H.
2001. Image Analogies. In Proceedings of Siggraph 2001, 327-340.

HINCKLEY, K., PAUSCH, R., GOBLE, J., AND KASSELL, N. 1994. Passive Real-
World Interface Props for Neurosurgical Visualization. In Proceedings of CHI
‘94, 452-458.

HOFFMAN, C.K. 1989. Geometric and Solid Modeling. Morgan Kaufmann Pub.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: A Sketching
Interface for 3D Freeform Design. In Proceedings of Siggraph 1999, 409-416.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI, M. A., LEE, J. C.,
DAVIDSON, P. L., WEBB, M., HUGHES, J. F., AND FINKELSTEIN, A. 2002.
WYSIWYG NPR: drawing strokes directly on 3D models. ACM Transactions on
Graphics (Proc. Siggraph 2002), 755-762.

KNISS, J., PREMOŽE, S., HANSEN, C., AND EBERT, D. 2002. Interactive
Translucent Volume Rendering and Procedural Modeling. In Proceedings of
Visualization 2002, IEEE Computer Society, 109-116.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK, A. 2002. Graphcut
Textures: Image and Video Synthesis Using Graph Cuts. ACM Transactions on
Graphics (Proc. Siggraph 2003), 277-286.

LAKE, A., MARSHALL, C., HARRIS, M., AND BLACKSTEIN, M. 2000. Stylized
Rendering Techniques for Scalable Real-Time 3D Animation. In Proceedings of
NPAR, 13-20.

MCGUFFIN, M. J., TANCAU, L., AND BALAKRISHNAN, R. 2003. Using
Deformations for Browsing Volumetric Data. In Proceedings of Visualization
2003, 401-408.

OWADA, S., NIELSEN, F., NAKAZAWA, K., AND IGARASHI, T. 2003. A Sketching
Interface for Modeling the Internal Structures of 3D Shapes. Lecture Notes in
Computer Science (LNCS 2733; Smart Graphics 2003), Springer-Verlag, 49-57

PEDERSON, H.K. 1996. A Framework for Interactive Texturing on Curved
Surfaces. In Proceedings of Siggraph 1996, 295-302.

PERLIN, K. 1985. An Image Synthesizer. In Proceedings of Siggraph 1985, 287-
296.

PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2000. Lapped Textures. In
Proceedings of Siggraph 2000, 465-470.

STAM, J. 1997. Aperiodic Texture Mapping. Technical Report R046, European
Research Consortium for Informatics and Mathematics (ERCIM).

TURK, G., AND O’BRIEN, J. F. 1999. Variational Implicit Surfaces. Technical
Report GIT-GVU-99-15, Graphics, Visualization, and Usability Center. Georgia
Institute of Technology.

TURK, G. 2001. Texture Synthesis on Surfaces. In Proceedings of Siggraph 2001,
347-354.

VIEGA, J., CONWAY, M.J., WILLIAMS, G., AND PAUSCH, R. 2002. 3D Magic
Lenses. In Proceedings of UIST ‘96, 51-58.

WANG, S.W., AND KAUFMAN, A.E. 1995. Volume Sculpting. In Proceedings of
Symposium on Interactive 3D Graphics 1995, 151-156

WEI, L-Y., AND LEVOY, M. 2000. Fast Texture Synthesis using Tree-structured
Vector Quantization. In Proceedings of Siggraph 2000, 479-488.

WEI, L-Y. 2001. Texture Synthesis by Fixed Neighborhood Searching. Ph.D.
Thesis. Stanford University.

ZHANG, J., ZHOU, K., VELHO, L., GUO, B., AND SHUM, H-Y. 2003. Synthesis of
Progressively-Variant Textures on Arbitrary Surfaces. ACM Transactions on
Graphics (Proc. Siggraph 2003), 295-302.

