Jensen Divergence Based SPD Matrix Means and Applications
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Abstract

Finding mean of matrices becomes increasingly im-
portant in modern signal processing problems that in-
volve matrix-valued images. In this paper, we define
the mean for a set of symmetric positive definite (SPD)
matrices based on information-theoretic divergences as
the unique minimizer of the averaged divergences, and
compare it with the means computed using the Rieman-
nian and Log-Euclidean metrics. For the class of diver-
gences induced by the convexity gap of a matrix func-
tional, we present a fast iterative concave-convex op-
timization scheme with guaranteed convergence to effi-
ciently approximate those divergence-based means.

1. Introduction

A recent trend in image processing is to consider
matrix-valued images, where each pixel of the image
is represented as a matrix of coefficients instead of a
traditional intensity value. Typical applications include
diffusion magnetic resonance image analysis [15], radar
signal processing [16], elasticity tensors [7] in mechan-
ical engineering, and structure tensors [3, 14, 13] in
computer vision.

Due to the use of matrix based images, the conven-
tional intensity-based image processing toolbox (e.g.,
inpainting, interpolation, segmentation etc.) needs to
be extended to matrix-valued images. In this paper,
we consider calculating the mean of matrices that is re-
quired for example in interpolation and clustering.

The mean of matrices is in general defined
as follows: Given a collection of SPD matrices
{My, ..., M, } C Sym} (d), where Sym, (d) represents

the set of d x d SPD matrices. The mean M is defined

as
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where D is a distance function. Different distance
functions give different means. For instance, if D is
the Frobenius norm induced distance, i.e., D(P, Q) =
|P — Q||%, then M becomes the arithmetic matrix
mean, and M = 13" | M;. However, the arithmetic
matrix mean is not robust to outliers, and it may have a
determinant larger than the input which is physically not
plausible in many applications [1]. The Log-Euclidean
(LE) distance is defined as D(P,Q) = |logQ —
log P||r, where log M is the principal logarithm of ma-
trix M. In [1], Arsigny et al. showed that the LE mean
inherits a vector space structure, and has a closed-form
Mg = exp[(>;log M;)/n]. The Riemannian dis-
tance is defined as D(P,Q) = [tr(log®(P~'Q))]'/?
and the mean is shown to be the unique matrix Mg sat-
isfying 3" log(M; ' Mp) = 0, which has a closed-
form solution when n = 2. For n > 2, Fiori et al. pro-
posed an optimization scheme to approximate the mean
[8].

In [5], Ando et al. summarized ten properties for a
“good” matrix mean. Bathia and Holbrook [2] investi-
gated properties of Riemannian matrix means. Bini and
lannazzo [4] recently proposed another geometric ma-
trix mean definition that satisfies most but not all of the
ten Ando-Li-Mathias properties.

In this work, we study the SPD mean with respect to
a non-metric distance function, called a divergence. A
divergence may not be symmetric nor satisfy the trian-
gle inequality as regular metrics.

2. Divergences from Jensen convexity gaps

Let (PQ) denote the linear interpolant (1 — \) P +
AQ for A € (0,1). From the (open cone) convexity of



the domain of Sym, , it follows that
VP, Q € Sym’, (PQ)x € Sym’,. 2

We build a family of skewed divergences from a strictly
convex generator F' : Sym’ — R as follows:

T9(P,Q) = (F(P)F(Q))a — F(PQ)a), (3

for0 < o< 1. J > 0and J) = 0iff P = Q.
Common convex matrix generators are
e F(X) =tr(XTX) (quadratic matrix entropy),
e F(X) = —logdet X (matrix Burg entropy),
e F(X)=tr(XlogX — X) (von Neumann entropy).
In particular, the symmetric Burbea-Rao diver-
gence [6] is obtained by choosing o = %, ie.,

PREIQ p (P49 20

BRF(Pa Q) =

Choosing F(X) = tr(XlogX — X), we get the
Jensen-von Neumann divergence, the matrix counter-
part of the celebrated Jensen-Shannon divergence. An
interesting property is that asymptotic skew Jensen di-
vergences are equivalent to Bregman divergences [12]:
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Br(Q, P) = lim mjp (P,Q), with

where (X,Y) = tr(XY) is the matrix inner product.
The von Neuman divergence

Dyn(P,Q) = tr(P(log P —logQ) = P+ Q) (4

belongs to a broader parametric family of matrix diver-
gences:
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with Dix(P,Q) = limaoi Da(P,Q), and
DVN(P7 Q) = lima— 1 Da(Pa Q)

3. Concave-convex minimization for
Jensen-based matrix means

By definition, the divergence-based (right-sided)
means on a set of SPD matrices { My, ..., M,, }, are ob-
tained by minimizing the average distortion measure:
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Note the left-sided mean can be calculated as a right
sided-mean for parameter o’ = 1 — «. The matrix mean
is solved according to

M = Argx esyms min [(X). (6)

Removing the constant terms independent of X in
[(X), we get an equivalent optimization problem,
V(X)=aF(X) =Y F((1-a)M;+aX). (7)
i=1
This loss function I'(X) = A(X)+ B(X) is asum of a
convex function A(X) = aF(X) plus a concave func-
tion B(X) = — > | F((1— a)M; + aX). It follows
that we can apply the concave-convex procedure [17] to
get the following iterative scheme: We start from an ini-
tial estimate C of the mean (say, the arithmetic mean
Cy = % >, M;), and update iteratively the current
mean C} using the concave-convex procedure (CCCP)
optimization step [17] (that does not require to set up a
learning rate):

VA(Ciy1) = —=VB(CY), ®)

and get

Cir1 = (VF)il <Xn: VF((l — a)Mi + oth)) .

i=1
This iterative scheme is guaranteed to converge to a

minimizer [17], and avoids to tune a learning step pa-
rameter as it is customary in gradient descent methods.

3.1. Matrix a-log-det divergence

When the convex generator is F'(X) = —log det X,
it gives us the a-log-det divergence, for e € (—1,1):
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The matrix mean of {Mi,..., M, } is defined as the
minimizer of the following optimization problem:

JEDX,Y) = F(Y)
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This can be solved by removing all terms independent
of X, and applying the concave-convex procedure. We
initialize Cp = % Z?:l M; and update iteratively using
the CCCP rule [17]
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i=1




Note that we can swap arguments in the a-log-det di-
vergence by turning « into —a::

X, Y) = ISV, X) (10)

Furthermore, the a-log-det divergence is invariant un-
der inversion and invertible transformations, i.e.,

JéaD)(Xa Y) = JL(/(B(Xil’ Y71)7
JCxCT,cycTy = J%(X,Y),¥C € GL(d),

where GL(d) is the set of invertible transformations.
These properties are very important in many applica-
tions [15].

3.2. Symmetrized matrix a-log-det divergence

The symmetrized matrix a-log-det divergence is

« 1 « (0%
sIX,Y) = 5 (HDE0Y) + I (v.0).

With initialization Cy = % Z?:l M;, the mean can
also be solved using the updating CCCP rule,

Cion = (VF) (3 %(1 — Q) VEF(aM; + (1 —a)Cy)

4. Experiments

We have implemented the Jensen-based matrix
concave-convex iteration algorithm in Java™ using the
JAMA! matrix package. Our open source implementa-
tion is readily available? for reproducible research. We
evaluated our method on both synthetic dataset and real
shape dataset.

4.1. Synthetic dataset

To get an SPD matrix M, we randomly draw a lower
triangle matrix L and let M = LL™. Table 1 reports the
gradients and inverse gradients for several commonly
used convex generators .

The Log-Euclidean-based, Riemannian-based and
divergence-based methods all report the identity ma-
trix for the mean of M with M~1. We observed
that our divergence-based algorithm converges fast to

'http://math.nist.gov/javanumerics/jama/
2yww.informationgeometry.org/SPD/

Entropy F(X) vE (VP!
Quadratic Lr(XXT) X X
log-det —logdet X -x-t  —_x-!
von Neum. tr(XlogX — X) logX exp X

Table 1. Gradients and inverse gradients
of several convex matrix generators.

a unique global minimum in practice for the Jensen-
von Neumann divergence: 10 iterations are enough to
get a 0.1%-error-approximation to the minimum (linear
convergence). As the dimension grows, the computa-
tional bottleneck is to calculate the eigendecomposition
of the matrix for performing the log/exp matrix opera-
tions required for computing VF and (VF)~. Indeed,
eigendecomposition of d-dimensional square matrices
requires roughly cubic time with a naive implementa-
tion.

4.2. Shape clustering

Shape clustering is an important step for shape re-
trieval in a large database. Shape clustering enables hi-
erarchical shape retrieval which is more efficient than
brute force shape retrieval. We evaluated Jensen di-
vergence based clustering on the MPEG-7 database [9],
which consists of 70 different categories with 20 shapes
per category, for a total of 1400 shapes. For each shape,
we first extract its boundary points, align them using
affine transformation, and then use the covariance ma-
trix, which is an SPD matrix, of the aligned boundary
points to represent this shape [11]. The SPD matrix is
also the covariance matrix of the the Gaussian distri-
bution estimated from the boundary points. The above
process is portrayed using the flow chart shown below

’ Shape ‘ —>’ Aligned boundary points ‘—> Covariance matrix

The hard clustering algorithm [10, 11] is used to per-
form clustering. The clustering accuracy is measured
according to a method proposed in [11], which is the
optimal number of categories per cluster (denoted by
|S|*, |S| represents the cardinality of S, i.e., the num-
ber of categories in S), divided by the average num-
ber of categories in each cluster (denoted by Avg(|S])).
For example, if there are 10 clusters {S;}12;, with an
average of 140 shapes per cluster, and thus, |S|* =
140/20 = 7; Avg(]S]) = %{)IS\ The clustering ac-
curacy describes the accuracy of separation of different
categories. The optimal clustering accuracy is 1. Fig-
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Figure 1. Shape clustering using Rieman-
nian, LE, and Jensen divergences.

Retrieval accuracy
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Figure 2. Clustering using symmetrized
matrix a-log-det divergence for various
a’s.

ure 1 compares the clustering accuracy of using Log-
Euclidean, Riemannian and our proposed Jensen diver-
gence. The parameter « is set to be one which maxi-
mizes the clustering accuracy. In this experiment, the
result achieves the best when o ~ 0.4 (this means that
the center has more weight than each single element in
the cluster). The results show that Jensen divergence
enables much higher clustering accuracy, implying sub-
stantial capability to distinguish shapes from different
categories.

We also used the symmetrized matrix a-log-det di-
vergence to do clustering. By changing the o, we get
different clustering accuracy, which is shown in Figure
2. The results illustrate that when o« = 0.5, the cluster-
ing achieves better accuracy.

5. Concluding remarks

We introduced divergence-based matrix means as
minimizers of average divergences.  We consider
the class of matrix divergences induced by a convex
functional, and described a novel efficient concave-
convex iteration method to compute those means. The
divergence-based mean depends on a convex matrix
functional which may be tuned according to specific ap-
plication domains.
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