
DynaFusion: A Modeling System for Interactive Impossible Objects

Shigeru Owada∗

Sony Computer Laboratories, Inc.
Jun Fujiki†

Kyushu University

Figure 1: The modeling results of our system. The impossible object can be interactively rotated.

Abstract

We describe DynaFusion, a modeling system for interactive impos-
sible objects. Impossible objects are defined as multiple 3D polygo-
nal meshes with edge visibility information and a set of constraints
that define pointwise relationships between the meshes. A user can
easily create such models with our modeling tool. The back-end of
our system is a constraint solver that seamlessly combines multiple
meshes in a projected 2D domain with 3D line orientations and that
maintains coherence for each successive viewpoint, thereby allow-
ing the user to rotate the impossible object without losing visual
continuity of the edges. We believe that our system will stimulate
the creation of innovative artworks.

CR Categories: J.5 [Computer Applications]: Arts and
Humanities—Fine arts; I.3.6 [Computer Graphics]: Methodology
and Techniques—Interaction Techniques; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Graphics Data Structures and
Data Types;

Keywords: Non-photorealistic geometry, modeling, impossible
objects, object representation, art

1 Introduction

This paper focuses on impossible objects, which have long been
considered as entertainment content (as in works by M.C. Escher or
O. Reutersvärd) and also as a topic for computer vision and brain
science [Huffman 1971; Penrose and Penrose 1958; Cowan and

∗e-mail:owd@imp.ossible.jp
†e-mail:fujuki@imp.ossible.jp

Pringle 1978]. Many books, video clips, and interactive arts have
made use of such objects, because of their strong appeal [Sugihara
2005; Fujiki et al. 2006]. We believe that impossible objects have
an unexplored possibility for expression using computer-generated
visual effects.

Defining an impossible object is difficult because it deals with the
mental images of drawings. If we define impossible objects as line
drawings where any 3D object cannot be made using a particular
reconstruction algorithm, just a random set of line segments can
qualify as an impossible object. This does not match what we in-
tuitively believe. The most plausible definition is like this: “Im-
possible objects are the impression of a 3D structure that arises in
the human mind when we see a particular line drawing, where any
solid 3D object cannot technically be reconstructed using a 3D re-
construction algorithm” [Gregory 1970; Robinson 1972; Sugihara
2005].

Although this definition contains some subjective evaluation, we
consider that it is the most appropriate definition because impos-
sible objects reside on the balance between the 3D-ness and non-
3D-ness of a 2D image, which is evaluated by the human mind.
Our goal in this work is to introduce 3D-ness (as it appears in the
human brain) using elemental consistent objects and non-3D-ness
using false connections between them. A more subjective analysis
is that the impossible object that we deal with is consistent only
locally (meaning a 3D reconstruction algorithm works for a local
structure) but inconsistent globally (the entire rendering result can-
not produce a valid 3D object using a reconstruction algorithm.)

The 3D reconstruct-ability is strongly connected to the notion of
the line labeling problem in computer vision [Clowes 1971; Huff-
man 1971]. Our system allows an arbitrary connection of incon-
sistently labeled pairs of edges by using a nonlinear optimization
technique in the projected domain. This approach introduces a very
simple framework that can be applied for a wide range of visual
effects. For example, objects that are rendered with different pro-
jection, or objects whose surface orientations do not match at the
connecting point, can be naturally combined by our system. This
is related to some remarkable previous work that handles multi-
perspective rendering and animation of a scene [Agrawala et al.
2000; Yu and McMillan 2004; Coleman and Singh 2004]. Although
our system can handle locally distorted objects and achieve similar
effects, it focuses on line drawing of the scene, and it can more
ambiguously and seamlessly connect multiple (and possibly differ-



ently projected) objects. For example, on the left of Figure 1, the
solidity of the object is unclear at the center of the scene (which usu-
ally corresponds to the junction of two elementary objects) because
we solely rely on line connections. We believe this ambiguous feel-
ing is important for expressing impossible objects.

The combined objects can be interactively rotated, while the prede-
fined connection is maintained during the rotation. Although some
previous studies also allow free rotation of an impossible object,
they are limited to a single object class [Khoh and Kovesi 2001;
Scott 2002], or the technical aspects are not disclosed [Tsuruno
1997].

2 Impossible objects by inconsistent line la-
beling

Line labeling is a standard computer vision technique to provide
the necessary information to reconstruct 3D geometry from 2D line
drawing [Clowes 1971; Huffman 1971]. Although we do not ex-
plicitly use this technique within our system, the users need to con-
sider this when designing impossible objects with our system.

Line labeling works as follows. Given a 2D line drawing, a line-
labeling algorithm assigns one (out of three) labels for each line
segment. For example, if a line segment is an out-most boundary, it
is labeled by an arrow that indicates (1) there is depth discontinuity
and (2) it is a boundary edge of the surface on the right side of the
arrow (this type of edge is called a silhouette arc.) The other two
labels indicate a ridge line that is either convex from the viewpoint
(label ‘+’ is assigned) or concave (label ‘-’ is assigned). Figure 2
shows a consistent line labeling assigned for a solid 3D object. If
we assume that each vertex in the drawing is connected to at most
three edges and that the object consists of planar faces, the pos-
sible combinations of line labels for one vertex are limited. This
set of combinations is called a vertex dictionary. This dictionary
has an algorithm that automatically assigns a label to each line seg-
ment [Huffman 1971]. A line drawing of a possible solid 3D object
always has a possible assignment of labels, although success in as-
signing labels does not directly imply that a 3D reconstruction is
possible.

Figure 2: An example of consistent line labeling

The user can connect arbitrarily labeled edges with our system, as
long as the connected edges are visible. For the example of the
‘Devil’s fork,’ a ‘+’ edge is connected to an arrow edge, and arrows
pointing in opposite directions are also connected (Figure 3).

3 User interface

Overview Our system takes a bottom-up approach in constructing
an impossible object. An impossible object consists of multiple
“possible” objects, rendered by outlines, which are connected by a
set of constraints in an “impossible” way. Each constraint describes
the connection of a pair of lines on different source models that
should be coincident in the rendered image. If the user rotates the
object, the constraints are automatically satisfied by the system for
each rendering frame that shows an interactive impossible object.

Figure 3: Line labeling in the ‘Devil’s fork’ example

Elementary object modeling The user starts the modeling pro-
cess by importing ordinary objects created by an external modeling
package. If desired, the user can reverse the orientation of the sur-
face (Figure 4b) or change the strength of perspective projection
(Figure 4c) using a dialog box associated with the object. Then
the user draws freeform strokes on the object to remove unwanted
edges (Figure 5b). This object’s appearance setting is repeated until
all objects are defined.

Constraints definition Then, the user connects edges of one ob-
ject to another by dragging them with the mouse (Figure 5c). The
position, orientation, and scale of the connected objects are imme-
diately updated so that the connected edges share the same line on
the screen.

By default, all objects can potentially be moved during the opti-
mization. If necessary, the user can define a fixed object that will
never move during the optimization.

Construction mode Our system has a “Construction mode,” where
only horizontal rotations are allowed (Figure 1 left, Figure 6
bottom-left). Although only limited motion can be assigned, this
mode offers quick feedback and a more robust execution of opti-
mization.

(a) Original model (b) Polygon flip (c) Projection change

Figure 4: Polygon flip and projection change for one object

4 Implementation

When the user specifies the connections of edges between two dif-
ferent objects, the relationship between corresponding endpoints
is represented as a constraint during a two-step optimization pro-
cess. The constraint is defined as follows. Each endpoint in the
local coordinate system (indexed as i) is originally parametrized
by six scalar values, represented as a tuple of (ri,oi), where ri is
the 3D position of the endpoint, and oi is the 3D orientation of
the corresponding edge. This point is projected to the screen co-
ordinate system. We represent this projected set of parameters as
(Ri,Oi), where Ri is the projected 3D position in the screen coor-
dinate system, while Oi is the projected orientation. We represent



(a) Imported models (b) Edge deletion by a free-form stroke

(c) Edge connection between objects. Blue/yellow squares indicate
     active objects

Figure 5: User interface of our system

each projection by the transformation function Mi(·), Ri = Mi(ri),
and Oi = Mi(oi).

The objective function to be minimized for the first optimization
process is

∑
i 6= j

(Rix −R jx)2 +(Riy −R jy)2 + || Oi
||Oi||

+
Oj

||Oj||
||,

where i and j are indices of connected pair of endpoints, || · || is
the norm of a vector value, and (Rix,Riy,Riz) = Ri. We assume that
the z axis in the window coordinate system is parallel to the view
direction, and this value is ignored when comparing the position.

For the second optimization process, the objective function is mod-
ified as follows:

∑
i 6= j

((R jx −Rix) ·Oiy − (R jy −Riy) ·Oix)2

+((R jx −Rix) ·O jy − (R jy −Riy) ·O jx)2,

where (Oix,Oiy,Oiz) = Oi. This objective function aligns two pro-
jected points on one 2D line on the screen, whose direction is paral-
lel to Oi and Oj on the 2D screen, instead of making two endpoints
as close as possible. This second stage is important for cases when
two endpoints in essence cannot match (such as a Penrose triangle:
Figure 6, top-right).

The free variables in the optimization are the projection function
Mi, assigned for each elemental object. We parametrize Mi as a
rigid transformation (translation, rotation) and scaling. The rota-
tion is performed along local X and Y axes. Scaling is an optional
parameter that can be disabled if the user wants. Therefore, Mi is
described by at most 6 parameters: 3 for translation, 2 for rotation,
and 1 for scaling. This is a highly nonlinear optimization problem,
so we use the Levenberg-Marquardt nonlinear optimization tech-
nique [Lourakis ].

If the transformation between the frames is too large, some popping
effects will be noticeable. Although this effect can be suppressed by
minimizing the parameter changes during the optimization, it then
causes difficulty in satisfying constraints. Therefore, we decided
to ignore the popping effect at the moment. In future work, we
will find a good balance between minimizing popping effects and
satisfying the constraints.

5 Results

Figure 6 shows some results created by our system. The rendering
can be performed at several frames per second. The top-left object

consists of two elementary objects, and the faces of the top object
are reversed. The top-right figure is the famous ‘Penrose triangle,’
which consists of three L-shaped objects. Each adjacent pair of L-
shaped objects is connected by three constraints. The bottom-left
example is the one in the “construction mode.” The projection of
the top part of this example is different from that of the bottom part.
In addition, the faces of the upper part of the model (the roof) are
reversed, while those of the bottom part are not. This example cre-
ates strange feelings regarding the 3D structure for most observers,
while some feel that the roof is deformed upon rotating the object.
The bottom-right example exhibits colinearity violation, where two
planes meet at non-unique lines. This is an impossible object if
we assume that all faces are planar. Subjects who look at this ex-
ample usually point out that the top face looks curved, which is
understandable because if the top face is curved, this object looks
possible. Figure 7 is another result of our system. The object con-
sists of five elements. The central cylinder and the wheels exhibit
some imposible-ness.

As shown in these examples, our system can seamlessly inte-
grate differently-oriented, projected, and line labeled objects on the
screen. However, a limitation of our system is that it cannot rotate
an object 360 degrees. It only supports a narrow range of viewing
angles that do not change the topology of rendered lines. Another
limitation is that our line rendering method does not consider the
global visibility culling of lines. The visibility is computed only
for each elementary object, and inter-object lines are always drawn
without considering the occlusion. These limitations are correlated
and should be solved in the future.

Figure 6: Results.

6 Conclusion and future work

We described the DynaFusion system, which is designed to pro-
duce interactive impossible objects. Our system allows arbitrarily-
labeled edges to be connected and the object to be rotated without
losing the visual continuity of connected lines. Our system should
enable artists to explore the possibility of impossible expressions
and to create innovative artworks.

We had a small workshop on this software in a classroom of an
art school. An interesting finding was that they could only create
possible objects at first (objects that have consistent line labels).
One possible reason for this happening is because they are too well
trained to design possible objects. Therefore, we believe that the



Figure 7: The ‘Impossible locomotive’ example.

user has to consider inconsistent line labels explicitly when design-
ing interesting impossible objects.

One drawback of our system is that because we used nonlinear opti-
mization for each frame, the system slows down if too many objects
are present. Therefore, designing a large scene is difficult. In the
future, we will try to solve this problem by finding a typical basic
pattern of impossible objects, which can be thoroughly analyzed to
make optimization unnecessary, and which can be used as building
blocks for large scenes. Another possible extension is to support
objects that contain curved lines. So far, only the pointwise con-
straints have been considered, and correlated points are connected
by straight lines. More sophisticated constraints may be defined to
draw curved lines between elementary objects. Another challenge
is shading. Because we dealt with only line drawings, how to add
shaded faces between objects is still an unsolved problem. We hope
to develop a general framework to design shaded impossible objects
efficiently.

Acknowledgements

Many thanks to prof. Hidenori Watanave at Digital Hollywood Uni-
versity, his colleagues, and his students for testing my implementa-
tion in the classroom and for giving valuable feedbacks. We thank
to Philipp Holzer and Alexis Andre for reviewing my manuscript
before submission in a tight schedule. We also thank to Ken Anjyo
at OLM Digital inc. to recommend me to submit to NPAR 2008.
Finally, we appreciate extremely profound and valuable comments
of anonymouse reviewers.

References

AGRAWALA, M., ZORIN, D., AND MUNZNER, T. 2000. Artistic
multiprojection rendering. In Proceedings of the Eurographics
Workshop on Rendering Techniques 2000, Springer-Verlag, Lon-
don, UK, 125–136.

CLOWES, M. 1971. On seeing things. Artificial Intelligence 2,
79–116.

COLEMAN, P., AND SINGH, K. 2004. Ryan: rendering your an-
imation nonlinearly projected. In NPAR ’04: Proceedings of
the 3rd international symposium on Non-photorealistic anima-
tion and rendering, ACM, New York, NY, USA, 129–156.

COWAN, T., AND PRINGLE, R. 1978. An investigation of the
cues responsible for figure impossibility. Journal of Experimen-
tal Psychology 4, 112–120.

FUJIKI, J., USHIAMA, T., AND TOMIMATSU, K. 2006. Designing
and implementing the interactive optical illusion. Information
Processing Society of Japan (IPSJ) SIG Notes 2006 (119), 31–
36.

GREGORY, R. 1970. The Intelligent Eye. Weidenfeld & Nicolson.

HUFFMAN, D. 1971. Impossible objects as nonsense sentences.
Machine Intelligence 6, 295–323.

KHOH, C. W., AND KOVESI, P. 2001. Rotating the impossible
rectangle. Leonardo 34, 3, 197–198.

LOURAKIS, M. levmar: Levenberg-Marquardt nonlinear least
squares algorithms in C/C++
(http://www.ics.forth.gr/ lourakis/levmar/).

PENROSE, L., AND PENROSE, R. 1958. Impossible objects : A
special type of visual illusion. British Journal of Psychology 49,
31–33.

ROBINSON, J. 1972. The Psychology of Visual Illusion. Hutchin-
son.

SCOTT, M. W. 2002. Implementing the continuous staircase illu-
sion in opengl. In SIGGRAPH ’02: ACM SIGGRAPH 2002 con-
ference abstracts and applications, ACM, New York, NY, USA,
200–200.

SUGIHARA, K. 2005. Fukanou Buttai no Suuri (Mathmatics in
Impossible Objects, in Japanese). Morikita Publishing Co., Ltd.

TSURUNO, S. 1997. The animation of M.C. Escher’s “Belvedere”.
In SIGGRAPH ’97 Visual Proceedings, 237.

YU, J., AND MCMILLAN, L. 2004. A Framework for Multiper-
spective Rendering. In Rendering Techniques 2004, Proceedings
of Eurographics Symposium on Rendering 2004 (Norrköping,
Sweden, June 21–23), EUROGRAPHICS Association, A. Keller
and H. W. Jensen, Eds., 61–68, 408.


